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Detecting Dependence Between Spatial Processes

MARCOS HERRERA, MANUEL RUIZ & JESÚS MUR

(Received March 2012; accepted February 2013)

ABSTRACT Testing the assumption of independence between variables is a crucial aspect of spatial
data analysis. However, the literature is limited and somewhat confusing. To our knowledge, we can
mention only the bivariate generalization of Moran’s statistic. This test suffers from several restrictions:
it is applicable only to pairs of variables, a weighting matrix and the assumption of linearity are needed;
the null hypothesis of the test is not totally clear. Given these limitations, we develop a new non-
parametric test, Υ(m), based on symbolic dynamics with better properties. We show that the Υ(m) test
can be extended to a multivariate framework, it is robust to departures from linearity, it does not need a
weighting matrix and can be adapted to different specifications of the null. The test is consistent,
computationally simple and with good size and power, as shown by a Monte Carlo experiment. An
application to the case of the productivity of the manufacturing sector in the Ebro Valley illustrates our
approach.

Détection de la dépendance entre procédés spatiaux

RÉSUMÉ Il est important de tester l’hypothèse de l’indépendance entre variables spatiales. Toutefois,
dans les ouvrages existants, nous ne pouvons mentionner que les statistiques de Moran à deux
variables, qui font l’objet de plusieurs restrictions. Applicable à des paires de variables: nous avons
besoin de linéarité et d’une matrice de pesage; l’hypothèse nulle n’est pas entièrement claire. Nous
présentons un nouvel essai non paramétrique, Υ(m), présentant de meilleures propriétés: il peut être
étendu à un cadre à variables multiples, il est résistant aux écarts par rapport à la linéarité, et il est
flexible au nul. Le test présente de bonnes caractéristiques de taille et puissance. Une application au cas
de notre productivité illustre notre approche.
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Detección de dependencia entre procesos espaciales

EXTRACTO Comprobar la hipótesis de independencia entre variables espaciales es importante.
No obstante, en la literatura solo podemos mencionar la estadística bivariada de Moran que sufre de
varias restricciones: es aplicable a pares de variables y necesitamos linealidad y una matriz de
ponderaciones; la hipótesis nula no está totalmente clara. Presentamos un nuevo test no
paramétrico, Υ(m), con mejores propiedades: puede extenderse a un marco multivariante, es
robusto frente a incumplimientos del supuesto de linealidad y se adapta bien a diferentes
especificaciones de la hipótesis nula. La prueba tiene un tamaño y una potencia satisfactorias. Una
aplicación al caso de la productividad ilustra este planteamiento planteamiento.

检测空间过程之间的依赖性

摘 要 : 检验空间变量之间的独立性假设非常重要。但是 , 在文献中我们只能找到

二元 Moran 统计数据 , 并且它受到以下几种限制 : 要适用于成对的变量 , 需要建立

线性和加权矩阵 ; 零假设不完全清晰。本文提出了新的非参数检验函数 Υ(m), 它具

有更优的属性 : 它可以扩展为多元框架 , 也很稳健 , 可脱离线性 , 并且对于零假设

具有灵活性。该检验具有合适的规模和功 效。本文还通过生产力案例的应用阐明

了这种方法。

KEYWORDS: non-parametric methods; spatial bootstrapping; spatial independence; symbolic dynamics

JEL CLASSIFICATION: C21; C50; R15

1. Introduction

Dependence is a distinguishing feature of spatial data. The notion that near
locations will exhibit similar values in a given variable is natural. The literature uses
the term spatial correlation to refer to this feature, which has attracted considerable
attention (Lesage & Pace, 2009, and references therein). We may think in terms of
one or several variables but the situation is the same: data may exhibit positive or
negative spatial autocorrelation depending on the interaction of the agents.

The detection of these dependencies is crucial in order to (i) model complex
spatial relationships in which the spatial arrangement plays a fundamental role, and
(ii) predict the spatial layout of a variable from known information about other
variables, possibly, in other locations. This has been widely recognized in different
fields such as epidemiology (Lawson, 2006), biology (Schmitz, 2010), economics
(Anselin, 1988) and demography (Goodchild & Janelle, 2003).

The bivariate generalization of Moran’s I (Wartenberg, 1985) is the most
popular technique for testing the assumption of independence between spatial
variables. The expression of the statistic is as follows:

Ixy ¼

PL
i¼1

PL
j¼1

i6¼j

yiwijxj

S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðyÞV̂arðxÞ
q ; ð1Þ
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where wij is the (i,j)-th element of the weighting matrix W and S0 is the sum of its
elements;V̂arðyÞandV̂arðxÞrefer to the (estimated) variance of the two series, y and
x. Wartenberg’s objective is to account for the spatial dependence of the data and
their multivariate covariance, ‘developing a strategy for the explanatory analysis of the
spatial pattern in the multivariate domain’ (1985, p. 264). Assuming that k different
variables are observed in locations points in space, he combines the relevant
information of this dataset in a (k × k) M matrix of Mantel coefficients. The
diagonal values of this matrix are the Moran’s I of each variable and the off-
diagonal elements are the bivariate cross-correlation coefficients of (1).

The work of Wartenberg focuses on the statistical modelling of the covariance
structure of the data, using generalized spatial principal component analysis.
Consequently, he does not address the problem of assessing significance of the
bivariate coefficients (their expected value and variance were obtained by Mantel
(1967) using a permutation approach). Anselin et al. (2002) take up the question
adopting the so-called randomization approach which means the assignation of
values to locations using random permutations (Cliff & Ord, 1981; Hall, 1985;
Upton & Fingleton, 1985). Then the observed value of the statistic is evaluated
against the empirical randomized distribution. This is the procedure implemented
in, for example, OpenGeoda (GeoDa, 2012) in the Multivariate Moran’s I Menu.
The null hypothesis is that the two series are i.i.d. and independent.

The approach of Czaplewski & Reich (1993) to the use of the bivariate
Moran’s I is different. Their null hypothesis is that there is no spatial autocorrela-
tion in the bivariate process {ys; xs}s∊S where S is a set of locations in space; in their
words: ‘assume the bivariate observation (ys; xs) for location s is a random, spatially
independent drawing forms one (or separate identical) population(s), and the joint distribution
function(s) for Y and X are unknown’ (1993, p.2). The null of no spatial correlation is
conditional on the observed linear dependence of the pairs (ys; xs)s∊S. The expected
value of the bivariate Moran’s Ixy of (1), considering the L ! random permutations
of the pairs (ys; xs)s∊S is:

E Ixy
� � ¼ � qyx

L � 1
; ð2Þ

ρyx being a measure of linear correlation between y and x. The expression of the
variance is rather awkward, as shown in equation (60) of Czaplewski & Reich
(1993). Moreover, they show that, for moderate to large sample sizes (L should be
greater than 40), the bivariate Moran’s Iyx tends to normality under the null (see
Reich et al., 1994, for a nice application).

Moreover, we should not forget the risk of spurious correlation when using
spatial data. Fingleton (2001) showed that it is very likely to find correlation
between two unrelated series, in the case they have a spatial unit root or are near to
nonstationarity; this result is, obviously, spurious. Mur & Trivez (2003) extend this
problem to series that are spatially autocorrelated, not necessarily near nonstatio-
narity, but with a strong deterministic component. If this is the case, the bivariate
Moran’s I, both in the Geoda and in the Czaplewski–Reich version, will reject the
null hypothesis due to the strong autocorrelation existing in the series.

Our impression is that the bivariate Moran’s I is a good statistic to explore
spatial relationships but it is not enough. We need some new techniques capable
of working with three different null hypotheses: (i) the series are i.i.d. and
independent, (ii) the bivariate process is spatially non-autocorrelated and (iii) the
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series are independent. This is the purpose of the new nonparametric statistic that
we call Υ(m). The Υ(m) test is free from distributional assumptions, it does need
the specification of a W weighting matrix, it is robust to strong departures from
linearity, and it is flexible to the specification of the null hypothesis. We show that
this test can be generalized to the case of more than two variables, is consistent and
with good size and power in the small sample case.

In Section 2 we present some definitions and basic concepts. Section 3 obtains
the independence test under different versions of the null hypothesis. Section 4
presents the results of a Monte Carlo experiment in which we also include the
bivariate Moran’s I. In Section 5, we discuss an application to the case of the
productivity in the manufacturing sector in the Ebro valley. Conclusions appear in
Section 6.

2. Tools for Symbolic Analysis

Symbolic dynamics is based on the transformation of a series into a sequence of
symbols that captures useful information that cannot be directly observed. The idea
is to consider a space where all the possible states of a system can be represented.
This space is partitioned into a finite number of regions and each region is
represented by a symbol. In other words, symbolic dynamics is a simplified
description of a dynamical system. For further details, see Hao & Zheng (1998).

2.1. Symbolization Process

This section presents a symbolization procedure for spatial series. The symboliza-
tion can be improved if additional information for the processes under study is
available.

Let {xs}s∊S and {ys}s∊S be two spatial processes of real data, where S is a set of
locations in space. Let us define a non-empty finite set of symbols, denoted by Γn=
{σ1,σ2,…,σn}.

Symbolizing a process means defining a map

fx : xsf gs2S ! Cn; ð3Þ
such that each element of the series, xs, is associated with a unique symbol

fx xsð Þ ¼ riswith is ∊ {1,2,…, n}. We say that location s ∊ S is of the σi-type, relative
to the series {xs}s∊S, if and only if fx xsð Þ ¼ ris . We call fx the symbolization map;
the same can be done for y.

Now we introduce a bivariate process {Zs}s∊S:

Zs ¼ xs; ysf g; ð4Þ
where xs and ys are two univariate spatial processes. We define the set of symbols
X2

n as the Cartesian product of the two individual sets Γn, that is, X2
n ¼ Cn � Cn.

The new symbols are gij ¼ rxi ;r
y
j

� �
. The symbolization function of the bivariate

process can be expressed as:

g : Zsf gs2S ! X2
n ¼ Cn � Cn; ð5Þ
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where

g Zs ¼ xs; ysð Þð Þ ¼ fx xsð Þ; fy ysð Þ� � ¼ gij ¼ rxi ; r
y
j

� �
: ð6Þ

We say that s is ηij-type for Z = (x,y) or simply that s is ηij-type, if and only if s is
rxi -type for x and ryj -type for y.

The analysis can be extended to a multivariate framework by considering the
following k -dimensional process, Zsf gs2S ¼ x1s; x2s; . . . ; xksf g. Let

Xk
n ¼ Cn � Cn � � � � Cn

be the Cartesian product of k copies of Γn and gi1;i2;...ik ¼ ri1 ;ri2 ; . . . ; rikð Þ 2 Xk
n.

We say that s is gi1;i2;...ik -type if and only if s is rij -type for xjs for all j = 1, 2, …, k.
Different symbolization schemes can be used depending on the characteristics

of the series. For the case of spatial data, the following procedure is simple and
offers good results (other alternatives can be found in Matilla & Ruiz, 2008, 2009;
López et al., 2010; Ruiz et al., 2010). Let Mx

e be the median of the spatial series
{xs}s∊S. Define the indicator function

ss ¼ 1 if xs � Mx
e :

0 otherwise:

	
ð7Þ

For each s ∊ S, let Ns be the set formed by the (m – 1)neighbours of
s, Ns ¼ s1; . . . ; sm�1f g, where m ≥ 2 is the embedding dimension of the
symbolization process. We use the term m-surrounding to denote the group formed
by location s and its corresponding set of indices Ns. Then for each location we build
the (m × 1) vector:

xm sð Þ ¼ xs; xs1 ; . . . ; xsm�1ð Þ:
Next, we define the indicator function for each si with i = 1,2,…, m – 1:

issi ¼ 0 if ss 6¼ ssi :
1 otherwise:

	
ð8Þ

Finally, we can symbolize the spatial process {xs}s∊S as fx : {xs}s∊S → Γm, where
function fx is:

fx xsð Þ ¼
Xm�1

i¼1

issi ; ð9Þ

with Γm = {0,1,…, m −1}. The cardinality of the set Γm is equal to m.
In sum, this symbolization process consists of comparing, for each location s,

the value ss with ssi for all si ∈ Ns. We repeat the discussion for y. Once the two
univariate processes have been symbolized, we obtain the symbol corresponding to
the bivariate process in each location.

Next, we calculate the absolute and relative frequency of the symbols. The
absolute frequency of symbol rxi is simply:

nrxi ¼ # s 2 Sjs is rxi � type for x

 �

; ð10Þ
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whose relative frequencies can be estimated:

p rxi
� � � prxi ¼ # s 2 Sjs is rxi � type for x


 �
jSj ¼ nrxi

jSj : ð11Þ

|S| denotes the cardinality of set S. The same applies for series {ys}s∊S. The
relative frequency for gij 2 X2

nis:

p gij
� �

� pgij ¼
# s 2 Sjs is gij � type
n o

jSj ¼ ngij
jSj ; ð12Þ

We introduce the concept of symbolic entropy for a two-dimensional spatial
series {Zs}s∊S through the Shannon statistic:

hZ mð Þ ¼ �
X
g2X2

m

p gð Þ ln p gð Þð Þ: ð13Þ

As is well-known, hZ (m) is a measure of information contained, in this case, in the
bivariate process.

Similarly, we can define the marginal symbolic entropies as

hx mð Þ ¼ �
X
rx2Cm

p rxð Þ ln p rxð Þð Þ; ð14Þ

hy mð Þ ¼ �
X
ry2Cm

p ryð Þ ln p ryð Þð Þ; ð15Þ

The joint and marginal entropies satisfy that 0 ≤ h (m) ≤ ln (n). The lower limit
is reached when only a single symbol appears and the upper limit is reached when
all the symbols have the same probability (they are uniformly distributed).

Note that under the assumption that each univariate process is i.i.d., and using
the symbolization procedure of (7)–(8)–(9), the probability of a given symbol is
given by

p rð Þ ¼ Cm�1
r =2 m�1ð Þ; ð16Þ

where Cm�1
r ¼ m� 1ð Þ!= m� 1� rð Þ!r!½ � denotes the number of σ-combinations

of symbols, σ ∊ {0,…, m − 1}, for the set of m − 1 elements.

2.2. A Simple Example

The following example presents a simple symbolization process. Let us assume that
we have two spatial processes x and y, observed in a 3 × 3 regular lattice as shown
in Figure 1.

474 M. Herrera et al.

D
ow

nl
oa

de
d 

by
 [

M
ar

co
s 

H
er

re
ra

] 
at

 1
3:

01
 1

8 
D

ec
em

be
r 

20
13

 



In the first place, we must define the value of m, the embedding dimension, for
example, m = 4. Then we identify the three nearest neighbours for each location:

Ns1 ¼ s2; s4; s5f gð Þ; Ns2 ¼ s3; s1; s5f gð Þ; Ns3 ¼ s2; s6; s5f gð Þ; Ns4 ¼ s5; s1; s7f gð Þ;
Ns5 ¼ s6; s2; s4f gð Þ; Ns6 ¼ s3; s5; s9f gð Þ; Ns7 ¼ s8; s4; s5f gð Þ; Ns8 ¼ s9; s5; s7f gð Þ;
Ns9 ¼ s6; s8; s5f gð Þ:

Now we can form the 4-surroundings for each observation. In the case of
variable x in location s1:

x4 s1ð Þ ¼ xs1 ¼ 4; xs2 ¼ 1; xs4 ¼ 6; xs5 ¼ 2ð Þ:
Similarly with the other locations and processes. The next step is to obtain the

symbols. In accordance with (7)–(8)–(9), and for variable x in location s1:

fx xs1ð Þ ¼ is1s2 ¼ 0ð Þ þ is1s4 ¼ 1ð Þ þ is1s5 ¼ 0ð Þ ¼ 1:

Likewise, we can obtain the symbols associated with the other locations:

fx xs2ð Þ ¼ 1; fx xs3ð Þ ¼ 1; fx xs4ð Þ ¼ 1; fx xs5ð Þ ¼ 1;

fx xs6ð Þ ¼ 2; fx xs7ð Þ ¼ 2; fx xs8ð Þ ¼ 2; fx xs9ð Þ ¼ 1:

The symbols associated with series y are:

fy ys1ð Þ ¼ 0; fy ys2ð Þ ¼ 1; fy ys3ð Þ ¼ 1; fy ys4ð Þ ¼ 1; fy ys5ð Þ ¼ 2; fy ys6ð Þ ¼ 2; fy ys7ð Þ ¼ 1;

fy ys8ð Þ ¼ 2; fy ys9ð Þ ¼ 2:

Finally, the symbols for the bivariate process Z = (x, y) are just the Cartesian
product of the two previous sets of symbols:

fz zs1ð Þ ¼ ð1; 0Þ; fz zs2ð Þ ¼ ð1; 1Þ; fz zs3ð Þ ¼ ð1; 1Þ; fz zs4ð Þ ¼ ð1; 1Þ; fz zs5ð Þ ¼ ð1; 2Þ;
fz zs6ð Þ ¼ ð2; 2Þ; fz zs7ð Þ ¼ ð2; 1Þ; fz zs8ð Þ ¼ ð2; 2Þ; fz zs9ð Þ ¼ ð2; 1Þ:

Figure 1. Example of regular lattice 3 × 3 for xs and ys.
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3. A Test for Independence Between Spatial Processes

In this section, we develop two non-parametric tests for spatial dependence using
the results of the previous section.

3.1. A composite null hypothesis of independence and i.i.d.

Let us consider a two-dimensional spatial series {Zs = (xs, ys)}s∊S with a fixed
embedding dimension, m ≥ 2. Our interest focuses on the following null and
alternative hypotheses:

H0 : xsf gs2S and ysf gs2S are i:i:d: and independent:
H1 : xsf gs2S and ysf gs2S are not i:i:d: and independent:

�
ð17Þ

The null hypothesis is tested using the symbolization procedure of Section 2.1.
For each symbol g 2 X2

nof the bivariate process, we define the random variable
Jgsas follows:

Jgs ¼
1 if location s is g-type:
0 otherwise:

	
ð18Þ

Jgs is a Bernoulli variable with probability of ‘success’ pη, where ‘success’ means
that s is η-type.

This restriction is obvious: X
g2X2

n

pg ¼ 1: ð19Þ

We assume that the set of locations S is finite, and that |S| = L. We are
interested in the number of locations that are of η-type, for all symbols g 2 X2

n; this
is measured by:

Qg ¼
X
s2S

Jgs : ð20Þ

Qη is a random variable whose values are integers in the range {0,1,2,…,L}.
Notice that not all Jη variables are independent (due to the possible overlapping of
the m-surroundings) and, therefore, Qη may not be a Binomial random variable.
Nevertheless, as shown by Soon (1996), the sum of dependent indicators can be
approximated to a Binomial if the following two conditions are satisfied (the details
appear in Appendix A):

1. Dependency among the indicators is weak.
2. The probability of occurrence of the indicators is small.

The first condition can be achieved by controlling for overlapping. The second
condition depends on the number of symbols, n. The symbolization procedure
presented in Section 2.1 entails, in general, a low probability for each indicator.

Ruiz et al. (2010) discuss the case of controlling for the degree of overlapping
of the m-surroundings to assure weak dependence among the Jgs indicators.
They show that it is possible to attain a good approximation to the Binomial
by considering only a subset of locations, ~S � S, with a fixed degree of overlapping.
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Less overlapping means weaker dependence among the indicators, but at the cost of
not symbolizing all the observations.

Under the null hypothesis H0, if the dependence among the Jη indicators is
weak, the variable Qη can be approximated to a Binomial random variable:

Qg 	 B L; pg
� �

: ð21Þ
The joint probability function of the n2 variables Qg11 ;Qg12 ; . . . ;Qgnn

� �
is a

multinomial such that:

P Qg11 ¼ a11; . . . ;Qgnn ¼ ann
� � ¼ a11 þ a12 þ � � � þ annð Þ!

a11!a12! � � � ann! pa11g11
pa12g12

� � � panngnn
; ð22Þ

where a11 þ a12 þ � � � þ ann ¼ L.
As a result of our symbolization procedure, the following Theorem can be

proved (see Appendix B for proofs):

Theorem 1 Let {xs}s∊S and {ys}s∊S be two spatial processes with |S| = L. Assume
that both processes have been symbolized such that the dependence among indicators Jη is weak.
Denote by hZ (m) the entropy defined in (13) for a fixed embedding dimension m ≥ 2, with
m 2 N. If the spatial series {xs}s∊S and {ys}s∊S are i.i.d.and independent, then the statistic

U mð Þ ¼ 2L 2 m� 1ð Þln 2ð Þ �
Xn

i¼1

Xn

j¼1

ngij
L

ln Cm�1
rxi

Cm�1
ryj

� �" #
� hZ mð Þ

" #
ð23Þ

is asymptotically distributed as a v2m2þ1.
Let α be a real number with 0 ≤ α ≤ 1 and v2a is such that Pr v2k > v2a

� � ¼ a.
To test

H0 : xsf gs2S and ysf gs2S are i:i:d: and independent; ð24Þ
the decision rule, with a 100 (1 − α) % confidence level, is:

If 0 
 U mð Þ 
 v2a; Do not reject H0:

Otherwise; Reject H0:

This test can be generalized to a k -dimensional spatial processes Z. The
expression of the multivariate test is:

U mð Þ ¼ 2L k m� 1ð Þln 2ð Þ �
Xn

i1¼1

� � �
Xn

ik¼1

ngij
L

ln
Yk
j¼1

Cm�1
rxiij

 !" #
� hZ mð Þ

" #
;

ð25Þ
which is asymptotically distributed as a v2ðmkþk�1Þ.

The composite null hypothesis of (24) can be rejected, in the first place, due to
the lack of independence of the two spatial processes and, secondly, because they
are not i.i.d. (one or both of them are spatially autocorrelated). We reserve the
term interdependence for the first case and the term intradependence for the second.
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3.2. Consistency of the test Υ(m)

In the previous section, we have obtained the Υ(m) test and its asymptotic
distribution under a composite null hypothesis. We now add the property of
consistency for a wide range of spatial processes (see Appendix C for proofs).

Theorem 2 Let {xs}s∊S and {ys}s∊S be two stationary processes, and m > 2
with m 2 N. Under dependence of order lower than m,

lim
L!1

Pr bU mð Þ > C
� �

¼ 1;

for all 0 < C < 1; C 2 R.
Parameter m is crucial to ensure the property of consistency. In fact, the Υ (m)

test will reject the composite null hypothesis of (24) provided that the dependence
(inter or intra) is of a smaller order than m; that is, it occurs inside the m-
surroundings. The researcher must define this parameter considering the following
conditions:

1. The minimum value of m is 2.
2. The maximum value of m depends on the sample size L. Note that L must

be larger than the number of symbols (n2 ≤ L). Moreover, in order to have
a good approximation to the χ2distribution, the expected value of the
frequencies for each symbol should be, at least, 5 (Rohatgi, 1976). This
means that the embedding dimension should be fixed so that 5 × n2 ≤ L.

In the case of the univariate symbolization procedure of (7)–(8)–(9), m = n so the
restriction reads m 
 ffiffiffiffiffiffiffiffi

L=5
p

. For example, if we establish m = 5, the bivariate
distribution would have 25 symbols and we need a sample of, at least, 125
observations.

3.3. A permutation alternative to the asymptotic approximation

We may come across situations where the conditions described above cannot be
fulfilled because there is a high overlapping or an insufficient number of
observations. In these cases, the random variable Qη of (20) will be a poor
approximation to the Binomial distribution and, consequently, the convergence of
Υ (m) to a χ2 distribution is not guaranteed. Below we present an alternative
strategy for testing independence using a traditional permutation procedure that
does not depend on the Binomial approximation.

Let us define W1 ¼ 1
2LU. The procedure, with a number B of permutations, is

as follows:

1. Compute the value of the statistic Ŵ1 from the original sample {xs}s∊S
and {ys}s∊S.

2. Randomly permuting {xs}s∊S and {ys}s∊S, we obtain two permuted series {xs
(b)}s∊S and {ys (b)}s∊S, where b is the number of the permuted sample.

3. For series {xs (b)}s∊S and {ys (b)}s∊S, estimate the statisticŴ bð Þ
1 .

4. Repeat steps 2 and 3 B – 1 times to obtain B permuted values of the

statistic Ŵ bð Þ
1

n oB

b¼1
.

5. Compute the estimated ppermutation-value:
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ppermutation � value Ŵ1

� �
¼ 1

B

XB

b¼1

1 Ŵ bð Þ
1 > Ŵ1

� �
; ð26Þ

where 1(·) is an indicator function that assigns 1 if the inequality is true and 0
otherwise.

6. Reject the null hypothesis H0 of (24) if

ppermutation � value Ŵ1

� �
< a; ð27Þ

for a nominal size α.
We can proceed in the same way for the case of the bivariate Moran’s Iyx,

either in what we have called the Geoda version or in the Czaplewski–Reich
version. In the first version, the randomization algorithm is as follows:

1. Compute the value of the statistic Îyx from the original sample {xs}s∊S
and {ys}s∊S.

2. Randomly permuting {xs}s∊S and {ys}s∊S, obtain two permuted series
{xs(b)}s∊S and {ys(b)}s∊S, where b is the number of the permuted sample.

3. For series {xs (b)}s∊S and {ys (b)}s∊S, estimate the statistic Î ðbÞyx .
4. Repeat B – 1 times steps 2 and 3 to obtain B permuted realizations of the

statistic Î ðbÞyx

n oB

b¼1
.

5. Compute the estimated ppermutation-value:

ppermutation � value Îyx
� �

¼ 1
B

XB

b¼1

1 Î ðbÞyx > Îyx
� �

: ð28Þ

6. Reject the null hypothesis H0 of (24) if

ppermutation � value Îyx
� �

> 1� a
2

� �
or ppermutation � value Îyx

� �
<

a
2
; ð29Þ

for a nominal size α.
Note that, in step 2, we randomly permute the two series separately. This

procedure breaks the possible dependence between the series (both are tests of
independence) and also destroys the spatial structure which may exist in either
series (they are also test of i.i.d.).

The only difference in the Czaplewski–Reich version is that, in step 2, we
randomly permute the pairs {xs,ys}s∊S of the {Zs}s∊S bivariate process, because we
want to preserve the dependence between the two series and destroy their spatial
structure.
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3.4. A simple null hypothesis of independence

The framework of Section 2 enables us to test for the hypothesis of independence,
allowing the series not to be i.i.d.The new null hypothesis is that the series, {xs}s∊S
and {ys}s∊S are independent, regardless of their spatial structure. In this section, we
obtain a bootstrapped test for this null that preserves the spatial structure of each
series.

Let us recall that, under the assumption of inter-independence, we have:

pgij ¼ pri prj : ð30Þ
So that, for the bivariate process of (4), the measure of entropy can be decomposed
as hZ (m) = hx (m) + hy (m), which leads us to the statistic:

W2 ¼ hx mð Þ þ hy mð Þ � hZ mð Þ; ð31Þ
This is the basis of the testing procedure of the null hypothesis:

H 0
0 : xsf gs2S and ysf gs2S are independent: ð32Þ

The distribution function of the Ψ2 statistics of (31), under the null of (32), is
unknown even in the case of large samples. We resort to bootstrap techniques. Few
results have been established for the case of bootstrapping spatial models (Pinkse &
Slade, 1998; Fingleton 2005, 2008; Fingleton & LeGallo, 2008; Monchuk et al.,
2011) and many of them focus on the case of the J test (Burridge & Fingleton,
2010; Burridge, 2012; Han & Lee, 2012)

Our approach follows the general guidelines of the non-overlapping time block
bootstrap of Carlstein (1986). We had to develop a spatial block bootstrap (SBB) to
break the dependence of the series but preserving most part of their spatial
structure. To our knowledge, this is the first time that a block bootstrap scheme has
been applied to spatial data. The SBB is as follows:

(i) Divide the spatial system into b = L/l contiguous observational blocks of
length l. By contiguous observational block we mean that the observations of
each block are contiguous according to the W weighting matrix. The b blocks
cannot overlap and must cover the whole spatial system.
(ii) Divide the two spatial series according to (i).
(iii) We have b different sub-samples of length l for each series. The next step is
to randomly resample the blocks, with replacement, in order to build the new
bootstrapped series of length L.
(iv) The resampling has been completed.

Note that changes in the spatial structure, in terms of the network of connections
between the locations, should be small because blocks of observations are
resampled, not individual observations. The blocks of step (i) are formed according
to a distance criterion to b previously defined fixed points. Let us call them the
buoys of the SBB. Once the buoys have been defined, each observation is assigned
to the nearest buoy to form a block of length l (other procedures can be used
depending on the purpose of the bootstrap).

The second part of the SSB has to do with the assignment of the data, taken
from their original location, to the new observation points. The criterion in this
stage of the algorithm is the distance to the buoy: the observations of each block
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were ordered according to the distance to the buoy of the block; then, the blocks
are resampled; finally, data are assigned to the observation points that, in the
destination block, occupy the same relative position as in the block of origin.

The example of Figure 2 illustrates the procedure. The original sample space
appears in the left-hand panel, Figure 2(a), with 40 data points. We are going to
use four blocks, l = 4. The buoys are the four vertices of the rectangle: {b (0,0), b
(1,0), b (1,1), b (0,1)}. The resulting blocks appear in the right-hand panel, Figure 2
(b), where each data point has been assigned to the nearest buoy. Then we resample
the four blocks, with replacement. Assume that the result of a given bootstrap is
{b (0,0), b (1,0), b (1,0), b (1,1)}. This means that, in the bootstrapped sample, the
block b (0,0) will remain in its original position, the same as the second block
b (1,0). The data of the second block will be copied in the spatial layout of the
third block, b (1,1), and distributed according to the distance criterion. Finally, the
10 observations of the third block will also be copied and distributed in the spatial
layout of the fourth block, b (0,1).

The SSB adapts well to problems where the W matrix has been built according
to some measure of distance, as in the k-nearest neighbours criterion. Obviously,
changes in the contiguity criterion should also involve changes in the spatial
bootstrapping scheme. The SSB will, inevitably, produce some mismatches in
relation to the original spatial ordering of the data but, according to our results, it
works efficiently, preserving much of the spatial structure of the original series.

4. Finite Sample Performance

This section focuses on the behaviour of the the new tests in a finite sampling
context. We use a Monte Carlo approach.

4.1. Global parameters of the Monte Carlo

For the null hypothesis of i.i.d. and independence, we compare the Ŵ1 test with
the bivariate Moran’s Iyx. The two tests coincide in the definition of the null but
their structure is very different. The Ŵ2 test is not directly comparable with the
previous two. Its null hypothesis is that the series are independent, whatever their

Figure 2. Spatial block bootstrapping. (a) Original sample. (b) Non-overlapping blocks.
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univariate structure. To our knowledge, this is the first test proposed in the
literature to deal with such a problem.

In each simulation, we use a randomly generated spatial map of the L locations.
The spatial support is non-regular and overlapping can be a problem, which makes
it advisable an empirical approximation to the independence tests.The global
parameters we use are the following:

L 2 100; 400; 1000f g; m 2 4; 6; 8f g: ð33Þ
L is the sample size and m is the embedding dimension.

In the experiment, we want to simulate linear and non-linear models. In the
first case, linearity, we control the relation through the expected coefficient of
determination, R2. Based on a specification like this:

y ¼ bxþ hWxþ e;

where the variance of x and ε are 1, Var [x] = Var[ε] = 1, assuming independence,
Cov [x, ε] = 0, the R2 statistic is:

R2 ¼ 1
1þ 1

b2þ h2
m�1ð Þ

:

To measure the empirical size, we use the Data Generation Process (DGP from
now on):

y � N 0; 1ð Þ;
x � N 0; 1ð Þ; ð34Þ

For the case of the power, we consider bivariate processes of the following type:

y ¼ F x;Wy;Wx; e½ �; e � N 0; 1ð Þ:
x � N 0; 1ð Þ: ð35Þ

where W is specified using the (m − 1) nearest neighbours criterion, and F is a
functional form to be defined. We have simulated three linear processes and three
non-linear processes.

DGP1: Intra-dependence and inter-independence. Linear relation.

y ¼ qWyþ e: ð36Þ
DGP2: Intra-independence and inter-dependence. Linear relation.

y ¼ bxþ hWxþ e: ð37Þ
DGP3: Intra-dependence and inter-dependence. Linear relation.

y ¼ qWyþ hWxþ e: ð38Þ
DGP4: Intra-dependence and inter-independence. Non-linear relation.

y ¼ 1

I � qWð Þ�1e
� � : ð39Þ
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DGP5: Intra-independence and inter-dependence. Non-linear relation.

y ¼ 1
bxþ hWxþ eð Þ : ð40Þ

DGP6: Intra-dependence and inter-dependence. Non-linear relation.

y ¼ 1

I � qWð Þ�1 hWxþ eð Þ� � : ð41Þ

Three values for the R2 coefficient have been used: R2 ∊ {0.4; 0.6; 0.8}. The
values of ρ, the spatial correlation coefficient, are ρ ∊ {0.4; 0.7; 0.9}. Parameter β
is fixed at 0.5. The values of θ are obtained as:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1ð Þ b2 1� R2ð Þ � R2

� �
R2 � 1

s
: ð42Þ

In the case of DGP3, coefficient ρ has been fixed to 0.5 and θ has been
obtained as in (42), where β = 0.

Note that DGP4–DGP6 are just the inverses of the corresponding linear
models DGP1–DGP3. The reason for this (apparently) strange specification is that
we would like to use strongly non-linear models to better appreciate the
differences between the statistics.

The most important parameters of the simulation are m, which defines the
embedding dimension, ρ, which defines the intensity of the spatial intra-
dependence and the R2 which defines the intensity of the relations. Each
experiment has been repeated 400 times.

4.2. Results of the Monte Carlo

First, we present the results corresponding to the most restrictive null hypothesis,
independence and i.i.d. Then we discuss the results for the null of independence
between the series.

4.2.1. Null hypothesis: independence and i.i.d. Table 1 shows the estimated size for
the two tests, Îxy and Ŵ1. The results are satisfactory although there is a slight
tendency to underestimate the size in small samples, especially for the Îxy statistic.
The restriction that, for each symbol, we must have at least 5 observations has
consequences: for a sample size L = 100, we can only consider the case of m = 4.

DGP1 presents intra-dependence and the results appear in Table 2. This
case falls under the alternative hypothesis of the bivariate Moran’s Îyx test of not to

Table 1. Estimated size of Ŵ1 and Îxy tests at 5% level

Ŵ1 Îxy

m 4 6 8 4 6 8

L = 100 4.25 – – 3.50 – –
L = 400 4.25 4.50 5.00 3.50 5.00 5.75
L = 1000 3.00 4.25 5.50 4.25 4.50 5.75

Note: Permutations: 399. Replications: 400.
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be i.i.d. (the clause of independence is true). The behaviour of Îyx is very poor,
with a maximum estimated power of 44.75%. Results are satisfactory for the Ŵ1

test: power increases rapidly with the sample size and reacts very quickly to the
symptoms of spatial dependence.

Table 3 shows the estimated power functions for DGP2 (inter-dependence
only). The estimated power of the two tests is quite good, attaining the maximum
value, 100, for samples of medium size. The estimated power of the Îyx test tends
to be higher, especially for small sample sizes. The distance that separates the two
tests diminishes as the R2 coefficient increases.

For DGP3 (intra- and inter-dependence), the results of Table 4 are even better,
with an estimated power of practically 100% in all cases.

The estimated power worsens for the non-linear processes. Tables 5, 6 and 7
show the results for DGP4 (intra-dependence only), DGP5 (inter-dependence
only) and DGP6 (intra- and inter-dependence), respectively. In all cases, the
estimated power reacts positively to the sample size and to higher values of ρ and of
the R2.

The values of the R2 included in Tables 6 and 7 are only for informative
purposes (the relationship is non-linear); in fact, they measure the relation between
the elements of the equation before inverting the right-hand side. As in the linear
case, the estimated power of the Ŵ1test for non-linear, intra- and interdependence
(Table 7), is fully satisfactory even with small sample sizes.

Table 2. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP1 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

Ŵ1

ρ = 0.4 31.25 95.25 78.00 71.75 100.00 98.50 97.75
ρ = 0.7 96.25 100.00 100.00 100.00 100.00 100.00 100.00
ρ = 0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Îxy
ρ = 0.4 8.50 10.50 12.75 11.75 13.00 11.25 13.75
ρ = 0.7 19.75 19.50 24.75 29.00 18.50 25.75 31.00
ρ = 0.9 30.75 27.25 34.25 44.75 32.25 33.75 36.25

Note: Permutations: 399. Replications: 400.

Table 3. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP2 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

Ŵ1

R2 = 0.4 39.00 97.00 99.00 99.00 100.00 100.00 100.00
R2 = 0.6 70.50 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.8 83.50 100.00 100.00 100.00 100.00 100.00 100.00

Îxy
R2 = 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.8 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Note: Permutations: 399. Replications: 400.
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Conversely, the behaviour of the bivariate Moran’s test is very poor. DGP4
presents nonlinear intra-dependence in y, x and y being independent. The
percentage of rejections is close to the nominal size. The case of the DGP4
corresponds also to the alternative hypothesis of Moran’s Îxy. The results for the
other two nonlinear DGP s are also unacceptable. Tables 5 to 7 confirm that
Moran’s Îxy is a spatial correlation coefficient that is not adequate when the
relationship is nonlinear.

Table 4. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP3 L = 100 L = 400 L = 1000

M 4 4 6 8 4 6 8

Ŵ1

R2 = 0.4 67.50 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.6 92.75 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.8 95.75 100.00 100.00 100.00 100.00 100.00 100.00

Îxy
R2 = 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.8 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Note: Permutations: 399. Replications: 400.

Table 5. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP4 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

Ŵ1

ρ = 0.4 14.75 72.00 59.25 49.75 99.50 93.75 89.50
ρ = 0.7 68.50 99.75 97.50 94.25 100.00 100.00 100.00
ρ = 0.9 99.50 100.00 100.00 100.00 100.00 100.00 100.00

Îxy
ρ = 0.4 4.25 4.00 6.00 3.25 5.75 5.25 6.25
ρ = 0.7 4.75 5.25 5.00 4.50 3.00 4.50 4.75
ρ = 0.9 6.75 6.75 4.75 7.00 6.00 3.00 5.50

Note: Permutations: 399. Replications: 400.

Table 6. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP5 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

Ŵ1

R2 = 0.4 18.25 82.00 84.75 87.75 98.50 99.50 99.75
R2 = 0.6 36.50 96.00 97.50 97.00 100.00 100.00 100.00
R2 = 0.8 48.75 99.25 100.00 99.75 100.00 100.00 100.00

Îxy
R2 = 0.4 5.00 4.50 4.50 6.75 4.50 5.75 5.50
R2 = 0.6 4.50 6.25 5.50 4.50 4.75 5.75 4.50
R2 = 0.8 4.25 5.25 5.75 5.75 5.00 6.25 5.75

Note: Permutations: 399. Replications: 400.
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4.2.2. Null hypothesis: independence. This section discusses the results of the Ŵ2
bootstrap test for the null hypothesis of independence of (32).

Table 8 shows the rejection frequencies of the Ŵ2 test for two different
specifications of the null hypothesis. When the processes are i:i:d:N 0; 1ð Þ, the
estimated size fluctuates around 5%, with a maximum of 5.75% and a minimum of
3.5%. For the case of a spatial autoregressive (SAR) in y and white noise process in
x, the empirical size is slightly higher that the 5% rate.

The estimated power for the case of linear inter-dependence, DGP2, appears in
Table 9. The performance of the Ŵ2 test is not satisfactory for the small sample
case, L = 100, although there is a clear improvement for L = 400. As expected, the
power is close to 100% for large sample sizes, L = 1000. A similar pattern emerges
for the case of inter-and intra-dependence, DGP3, in Table 10.

Tables 11 and 12 show the results for non-linear models. The estimated power
of the Ŵ2 test decreases in all the cases. DGP5 in Table 11 corresponds to the case
of inter-dependence between the series which are intra-independent. The
estimated power for L = 100 is very low, always below the 20% rate of correct
decisions. The power increases for L = 400 and attains acceptable values for large
sample sizes. In all cases, a stronger relation between the variables (measured
through the R2 coefficient) improves the power of the test.

Finally, Table 12 summarizes the behaviour of the test for the case of nonlinear
inter- and intradependence, DGP6. The situation does not change: bad results for
small samples which improve as the sample size increases. The impact of the R2, as
a measure of association between the variables, is not very clear. It appears to be a
kind of trade-off: if the R2 increases there is a beneficial effect, but the length of the
m-surrounding, m, has a clear negative impact.

Table 7. Estimated power of Ŵ1 and Îxy tests at 5% level

DGP6 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

Ŵ1

R2 = 0.4 61.50 100.00 99.25 98.25 100.00 100.00 100.00
R2 = 0.6 79.25 100.00 100.00 100.00 100.00 100.00 100.00
R2 = 0.8 85.25 100.00 100.00 100.00 100.00 100.00 100.00

Îxy
R2 = 0.4 4.00 4.50 5.00 6.75 5.25 6.25 5.50
R2 = 0.6 5.25 5.50 4.50 6.00 4.75 6.75 6.00
R2 = 0.8 5.75 5.50 6.50 7.50 4.25 4.25 6.00

Note: Permutations: 399. Replications: 400.

Table 8. Estimated size of Ŵ2 test at 5% level

DGP
y � N 0; 1ð Þ;
x � N 0; 1ð Þ:

y ¼ 0:5yþ e ;
e � N 0; 1ð Þ;
x � N 0; 1ð Þ:

M 4 6 8 4 6 8

L = 400 5.00 3.50 5.50 5.25 6.25 9.0
L = 1000 5.75 4.50 4.50 5.00 5.25 7.75

Note: Number of blocks in the SSB b = 8
Number of bootstraps: 399. Replications: 400.
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In order to better appreciate these results, we would like to add that the inverse
nonlinear transformations of DGPs 4 to 6 are the worst options for our testing
procedure (the same applies for the case of the bivariate Moran’s Îxy). Better results
were obtained for all the tests with other nonlinear specification, that are closer to
linearity.

Table 9. Estimated power of Ŵ2 test at 5% level

DGP2 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

R2 = 0.4 18.50 59.00 62.25 66.75 94.50 96.00 97.00
R2 = 0.6 26.75 75.50 76.75 74.25 100.00 99.75 98.00
R2 = 0.8 32.25 89.50 81.50 73.75 99.75 99.75 99.50

Note: Number of blocks in the SSB, b = 4 if L = 100 and b = 8 if L > 100.
Number of bootstraps: 399. Replications: 400.

Table 10. Estimated power of Ŵ2 test at 5% level

DGP3 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

R2 = 0.4 7.75 21.75 30.25 33.75 56.00 69.75 74.50
R2 = 0.6 12.50 51.00 48.50 46.50 88.75 92.25 89.75
R2 = 0.8 15.75 70.25 54.75 45.25 99.50 97.00 94.50

Note: Number of blocks in the SSB, b = 4 if L = 100 and b = 8 if L > 100.
Number of bootstraps: 399. Replications: 400.

Table 11. Estimated power of Ŵ2 test at 5% level

DGP5 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

R2 = 0.4 12.75 33.75 42.75 49.00 81.50 82.25 86.50
R2 = 0.6 16.75 42.75 45.75 48.25 86.00 87.50 88.00
R2 = 0.8 12.00 52.75 51.50 46.00 96.25 91.00 88.25

Note: Number of blocks in the SSB, b = 4 if L = 100 and b = 8 if L > 100.
Number of bootstraps: 399. Replications: 400.

Table 12. Estimated power of Ŵ2test at 5% level

DGP6 L = 100 L = 400 L = 1000

m 4 4 6 8 4 6 8

R2 = 0.4 9.00 25.75 28.00 33.25 57.25 64.00 67.75
R2 = 0.6 6.00 27.00 23.50 27.25 53.50 56.75 63.00
R2 = 0.8 8.00 26.50 23.50 21.25 66.25 56.50 55.25

Note: Number of blocks in the SSB, b = 4 if L = 100 and b = 8 if L > 100.
Number of bootstraps: 399. Replications: 400.
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5. An application to the Ebro Valley

In this section, we focus on the productivity of the labour factor which, in the long
run, ‘is almost everything’, according to Krugman (1997, p. 9). The literature on
Regional Economics highlights the importance of externalities, as interaction
mechanisms which affect the evolution of productivity in different and, sometimes
distant, areas. In general terms, the literature distinguishes four wide categories of
external effects:

(i) Urban externalities, which have to do with the role of cities in today’s
economy. Jacobs (1984) points to the importance of the diversity of the urban
network. The evidence is not conclusive with respect to size (Rosenthal &
Strange, 2004) although it does seem to be so in relative terms. Ciccone & Hall
(1996), Ciccone (2002) and Fingleton (2003) find a positive effect of the density
of employment on productivity.
(ii) Location externalities or MAR externalities (in honour of Marshall, 1890;
Arrow, 1962; Romer, 1990). Part of the literature emphasizes the importance,
for a particular industry, of the spatial concentration: physical concentration
generates knowledge externalities, reduces transport and communication costs,
stimulates competition in the supply markets and improves the qualification in
local labour markets.
(iii) Competition externalities. Porter (1998) claims that the need to remain
competitive is the main incentive for firms to innovate. Pressure from
competitors leads firms to better absorb new technologies, increase their
innovative capacity and raise their productivity. The evidence provided by
Glaeser et al. (1992) seems robust.
(iv) Labour externalities, alluding to the need for the employment demand
profile of a territory to match the supply profile. Rice et al. (2006) and
Erikson & Lindgren (2009) stressed that a good balance between the two
profiles is fundamental for achieving permanent improvements in productivity.

We are interested in verifiying whether, effectively, the productivity data are
related to the habitual indicators of these externalities. We will use data from the
manufacturing sector of the municipalities of the Ebro valley, in the Iberian Peninsula.
We limit the study to the period 2007–2009; we use the three-years average.

The Ebro valley is a depression situated in the northeast of the Iberian
Peninsula that follows the course of the River Ebro from its central part to its
mouth in the delta of Amposta. In this macro-region, there are 2,125 municip-
alities distributed among four Autonomous Communities: Aragón, Cataluña, La
Rioja and Navarra. They make up a little more than 20% of the Spanish economy,
with a GDP per capita that is 15% above the average. The municipalities of the
valley tend to be small with a surface area of 44.8 Km2 and a population of 4,500
on average (for a more detailed analysis, see Angulo et al., 2012).

Most of the information comes from SABI, Sistema de análisis de balances ibéricos
(Bureau van Dijk, 2012), complemented with other sources. SABI is a database that
contains information of a representative directory of firms that operate in the
Iberian Peninsula. The information in which we are interested (basically, figures
about sales and employment) refer to firms from the manufacturing sector which,
later, have been grouped by municipality. The variables that we are going to
employ are the following:

488 M. Herrera et al.

D
ow

nl
oa

de
d 

by
 [

M
ar

co
s 

H
er

re
ra

] 
at

 1
3:

01
 1

8 
D

ec
em

be
r 

20
13

 



. PM. The labour productivity of the manufacturing sector of municipality i,
obtained by dividing the sales (in real terms, base 100=2008) declared by the
firms of the sector established in municipality i, in thousands of euros, by the
total number of jobs in the same firms (Source SABI, 2012).

. PO. Population residing in municipality i (Source Instituto Nacional de
Estadística, INE, 2012). This is an indicator of urban externalities.

. ED. Employment density, measured as the number of jobs per Km2 in
municipality i. This is an indicator of urban externalities.

. QL. Location coefficient for the manufacturing sector in municipality i
obtained as:

QLir ¼
eMi
eM�

� �
e�i
e��

� � ; ð43Þ

where eMi is the employment of the manufacture sector in municipality i. A dot, •,
means aggregate. This is an indicator of location externalities.

. CC. Competition coefficient defined as:

QLir ¼
xM

i
eM�

� �
x�

i
e��

� � ; ð44Þ

where xM
i is the number of firms of the manufacturing sector in municipality i.

This is an indicator of Porter externality.

. ER. Employment rate, obtained as the quotient between total employment
and working population in municipality i. This is an indicator of labour
externalities.

Figure 3 shows the municipal distribution of the indicators. There is a strong
structure in these data, as the information in Table 13 corroborates: 10 of the 15
linear correlation coefficients and the six Moran coefficients of spatial correlation
are significant. The relationships that we detect in all cases are positive, as theory
predicts.

In sum, space is a relevant factor to explain the municipal distribution of the
productivity data in the manufacturing sector in the Ebro valley and externalities
appear to play a determinant role.

Table 14 shows the results of the tests of Independence between spatial series
carried out in Sections 2 and 3. It should be remembered that not all the tests have
the same null hypothesis. The tests Ŵ1 and the bivariate Moran’s Îyx, Geoda
version, have a composite hypothesis of intra-independence (for each of the two
series) and inter-independence (between the two series). The null hypothesis of test
Ŵ2 is that the two series are independent, whatever the spatial structure of them.

These results are interesting in the sense that the composite tests (Ŵ1 and Îyx)
detect a strong dependence between data on productivity and the indicators of
externalities. However, if we take out the spatial structure of both group of
variables we conclude, with the test Ŵ2, that this dependence is, to a great extent,
spurious. In fact, only for the case of the location coefficient, QL, a measure of
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location or MAR externalities, we obtain a statistically significant relation with
labour productivity.

For the manufacturing sector in the Ebro valley, neither urban externalities nor
labour externalities nor competition externalities ‘a-la-Porter’ seem to have a
significant relation with the productivity data. Obviously, if they have no relation,
beyond the similarity of their spatial distributions, they could hardly affect (in the
sense of causing) the productivity results. The hypothesis of dependence cannot be
rejected for the productivity-spatial concentration case of the manufacturing sector.

We believe that this result is important in itself because it indicates that not all
the externalities have equal importance: to explain the productivity of the

Figure 3. Productivity and externality indicators by municipalities in the Ebro valley.
Period 2007–2009.
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manufacturing sector in the Ebro valley, we should focus on location externalities.
Logically, the next step is to try to identify the direction of the causal mechanism
between the two variables (if it exists). In fact, either interpretation is possible:
higher productivity in a municipality may help attract manufacturing firms or,
alternatively, a concentration of firms in a municipality may improve the
productivity of the labour factor due to specialization.

6. Conclusions

There is an abundant literature devoted to the issue of spatial autocorrelation, a ‘hot
topic’ in Spatial Econometrics as stated by Anselin (1988). However, the references
for the case of cross-correlation analysis between variables are very limited. To our
knowledge, we can only cite the bivariate Moran’s Ixy. This is a good statistic,
simple, intuitive and powerful, but has several limitations: it is restricted to pairs of
series, the relation must be linear and a weighting matrix is needed to solve the test.
Moreover, the exact meaning of the null hypothesis of the test is not totally clear.

The Υ (m) statistic developed in this paper does not suffer from these shortcomings:
it is not restricted to a specific functional form, it can be generalized to the case of more
than two variables, these variables may be of a discrete nature and it does not need a
weighting matrix. The test is consistent and computationally simple to obtain.

In our view, one of the most important properties of the Υ (m) test is that it can
be easily adapted to the null hypothesis of interest. As shown in the paper, it is

Table 13. Productivity and externalities in the Ebro Valley. (2007–2009)

Linear Correlation Coefficients

PM PO ER ED QL CC

PM 1 0.101(*) 0.109(*) 0.158 0.652 0.3101(*)
PO 1 0.993(*) 0.410 0.016 −0.010
ER 1 0.457(*) 0.019(*) −0.012
ED 1 0.040(*) 0.011
QL 1 0.206(*)
CC 1

Moran’s I coefficient of spatial dependence
Moran’s I 7.425(*) 20.905(*) 8.859(*) 36.131(*) 18.480(*) 3.363(*)

(*) An asterisk means that the statistic is significative at a 5% level.

Table 14. Bivariate measures of spatial correlation of the productivity in the Manufac-
turing sector in the Ebro valley. Period: 2007–2009

Ŵ1 Ŵb
1ð0:05Þ Ŵ2 Ŵb

2ð0:05Þ Îyx Î byxð0:025Þ Î byxð0:975Þ
PM-PO 0.572(*) 0.231 5.338 14.760 0.069(*) 0.033 −0.029
PM-ER 0.579(*) 0.332 5.380 14.865 0.077(*) 0.040 −0.039
PM-ED 0.503(*) 0.145 4.530 14.630 0.199(*) 0.058 −0.078
PM-QL 1.619(*) 0.230 15.654(*) 12.725 0.173(*) 0.044 −0.045
PM-CC 1.572(*) 0.188 5.514 12.787 0.039(*) 0.022 −0.023

Number of blocks in the SSB, b = 8. The embedding dimension used is equal to 6, m = 6.
An asterisk, (*), means that the statistic is significative at a 5% level. b means bootstrapped critical values, after 199
boots, at the significance value indicated between brackets. Note that Ŵ1 and Ŵ2 are one-sided test whereas
Moran’s bivariate Îyx is a two-sided test.
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possible to test for three different hypotheses within the same framework: (i) the
series are i.i.d. and independent, (ii) the bivariate series are non-spatially
autocorrelated and (iii) the series are independent. The Monte Carlo results that
we report are convincing in favour of the Υ (m) test, especially when nonlinearities
can be present in the models.

Our impression is that the Υ (m) test could be a useful technique for applied
research with spatial data. By way of example, we have discovered that the
productivity of the manufacturing sector in the Ebro Valley, during the last decade,
is only related to location externalities. In fact, urban, labour or externalities ‘a-la-
Porter’ have been discarded by our test. Finally, we must acknowledge that there
remain aspects that need further attention, including a more thorough study of
non-linear patterns.
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Appendix
Appendix A: A bound for the Binomial approximation of a sum of
dependent indicators

If variables Jηi and Jηj are not independent for all i ≠ j for some η ∊ Γ, is possible that Qη does not follow a
Binomial distribution. In this case, an interesting question is how far is Qη from B(L, pη). Under certain
assumptions, the variable Qη can be approximated to a Binomial random variable

Qg 	 BðL; pgÞ: ð45Þ

In fact, it is possible to compute a bound for this binomial approximation.
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Denote by ℒ(Yη) the distribution of Yη. We are interested in the bound of the Binomial approximation of the
distribution of Yη in terms of total variation distance, dTV, which measures the distance between two probability
distributions P and Q:

dTV ðP;QÞ ¼ sup
A

jPðAÞ � QðAÞj;

where the supremum is taken over all measurable sets of the real line.
Following Theorem 1.1 in Soon (1996) and after a few calculations, a bound can be given as follows:
For each i, j ∊ S let Jηj, Jηi and Jηij be defned in the same probability space where Mηji = (Jηj∣JηI = 1), let

Wi ¼
X
j 6¼i

Jgj Vi ¼
X
j 6¼i

Mgji;

and

CL;pg ¼ 1� pLþ1
g � qLþ1

g

ðL þ 1Þpgqg :

Wi counts the number of indexes that are of η-type and qη = 1−pη. On the other hand

Vi ¼
X
j 6¼i

ðJgjjJgi ¼ 1Þ;

counts the number of indexes that are of η-type conditioned to location i is of η-type.
Then

dTV ðLðYgÞ; BðL; pÞÞ 
 CL;pp
X
i2S

E jWi � Vijð Þ:

Therefore in order to get a bound for the binomial approximation we have to boundX
i2S

EðjWi � VijÞ: ð46Þ

On the other hand we have that EðjWi � VijÞ 
 P
j 6¼i

EðjJgj �MgjijÞ. Now denote by Bg
i a subset of indexes

such that Jηi is independent of Jgjjj =2 Bg
i


 �
. We will call overlapping degree of location i to ri ¼ jBg

i j � 1.

Therefore we obtain that

dTV ðLðQgÞ; BðL; pÞÞ 
 CL;pp
X
i2S

EðjWi � VijÞ 



 CL;pp
X
i2S

X
j2Bg

i n if g
EðjJgj �MgjijÞ:

ð47Þ

Since limL→∞CL,p = 0, we have shown that the sum of dependent indicators can be approximated to a
Binomial random variable when

lim
L!1

X
i2S

X
j2Bg

i n if g
EðjJgj � JgjijÞ ¼ C ð48Þ

for some real positive constant C. A natural way for (48) to hold is to control for the overlapping degree by
selecting a subset of symbolized locations S′.
By simplicity we will call L = ∣S′∣. Therefore if the set of symbolized locations S′ is such that

lim
L!1

X
i2S0

ri ¼ K ; ð49Þ

for some positive constant K, then (48) holds. Therefore by (47) we have that Qη asymptotically follows a
Binomial distribution.
We will say that the dependence of the indicators Jηs is weak if Qη asymptotically follows a Binomial distribution

B(L, pη).
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Appendix B: Proof of Theorem 3.1.

The likelihood function of the multinomial distribution of (22) is:

Fðpg11 ; pg12 ; . . . ; pgnn Þ ¼ L!
ng11 !ng12 ! � � � ngnn !

png11
g11

png12
g12

. . . p
ngnn
gnn ; ð50Þ

and as
P
i;j
pgij ¼ 1, it follows that

Fðpg11 ; pg12 ; . . . ; pgnn Þ ¼ L!
ng11 !ng12 ! � � � ngnn !

png11
g11

png12
g12

. . . ð1� pg11 � . . .� pgnn�1
Þngnn : ð51Þ

The logarithm of the likelihood function is

lnðFðpg11 ; pg12 ; . . . ; pgnn Þ ¼ ln
L!

ng11 !ng12 ! � � � ngnn !
 �

þ
Xn
i¼1

Xn�1

j¼1

ngij ln pgij

� �
þ ngnnlnð1� pg11 � pg12 � . . .� pgnn�1

Þ:

To obtain the maximum likelihood estimators p̂gij of pgij for all i, j = 1, 2,…, n, we need the score

@lnðFðpg11;pg12; . . . ;pgnnÞÞ
@pgij

¼ 0;

so that

p̂gij ¼
ngij
L

:

The likelihood ratio statistic is:

kðQÞ ¼
R!

ngn11 !ngn12 !...ngnn !
p
ð0Þng11
g11 p

ð0Þng12
g12 . . . p

ð0Þngnn
gnn

R!
ngn11 !ngn12 !...ngnn !

p̂
ng11
g11 p̂

ng12
g12 . . . p̂

ngnn
gnn

¼

Qn
i¼1

Qn
j¼1

p
ð0Þngij
gijQn

i¼1

Qn
j¼1

ðngijR Þngij

¼ L

Pn
i¼1

Pn
j¼1

ngij

Qn
i¼1

Qn
j¼1

p
ð0Þngij
gijQn

i¼1

Qn
j¼1

nng ijgij

¼ LL
Yn
i¼1

Yn
j¼1

pð0Þgij

ngij

 !ngij

;

where pð0Þgij denotes the probability of symbol ηij under the null hypothesis.
Under the assumption of independent iid series, Υ(m) = −2ln (λ(Q)) asymptotically follows a Chi-square

distribution with k degrees of freedom, where k is the number of unknown parameters under H1 less the number
of unknown parameters under H0 (Lehmann, 1986). Then,

UðmÞ ¼ �2lnðkðQÞÞ ¼ � 2

"
LlnL þ

Xn
i¼1

Xn
j¼1

ngij ln
pð0Þg

ij

ngij

0@ 1A# � v2k : ð52Þ

The spatial processes {xs}s∊S and {ys}s∊S are independent under the null hypothesis, so we may write

pð0Þgij
¼ pð0Þrxi

pð0Þryj
:
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Using this result, and considering that
Pn
i¼1

Pn
j¼1

ngij
R ¼ 1, we obtain that

UðmÞ ¼ �2L
h
lnL þPn

i¼1

Pn
j¼1

ngij
L ln
� pð0Þ

rx
i
pð0Þ
r
y
j

ngij

�i
¼ �2L

h
lnL þPn

i¼1

Pn
j¼1

ngij
L lnðpð0Þrxi

pð0Þryj
Þ �Pn

i¼1

Pn
j¼1

ngij
L ln
�
ngij

L
L

�i
¼ �2L

h
lnL þPn

i¼1

Pn
j¼1

ngij
L lnðpð0Þrxi

pð0Þryj
Þ �Pn

i¼1

Pn
j¼1

ngij
L lnð ngijL Þ

�Pn
i¼1

Pn
j¼1

ngij
R lnðLÞ

i
¼ �2L

hPn
i¼1

Pn
j¼1

ngij
L lnðpð0Þrxi

pð0Þryj
Þ �Pn

i¼1

Pn
j¼1

ngij
L lnð ngijL Þ

i
:

So, with the symbolization proposed in Section 2.1, and considering that, under the null hypothesis, spatial
processes are independent and i.i.d., then pð0Þrxi

¼ pð0Þryj
¼ Cm�1

ri =2ðm�1Þ for all i = 1, 2,…, m. On the other hand,

hZ (m) = �Pn
i¼1

Pn
j¼1

ngij
L lnð ngijL Þ. We can easily obtain the following result:

UðmÞ ¼ 2L½2ðm� 1Þlnð2Þ � ½
Xn
i¼1

Xn
j¼1

ngij
L

lnðcm�1
rxi

cm�1
ryj

Þ � hZðmÞ�; ð53Þ

as desired.▪

Appendix C: Proof of Theorem 3.2.

First note that plim
L!1

p̂r ¼ pr exists for every spatial process, where p̂r ¼ nr
L .

The logarithm function is continous so it follows that

plim
L!1

bhðmÞ ¼ hðmÞ: ð54Þ

Let bU (m) represent the estimator of Υ(m):

bUðmÞ ¼ 2L½2ðm� 1Þlnð2Þ � ½
Xn
i¼1

Xn
j¼1

ngij
L

lnðcm�1
rxi

cm�1
ryj

Þ � hZðmÞ�:

The measure H (m) = 2(m − 1) ln (2) ½Pn
i¼1

Pn
j¼1

ngij
L lnðcm�1

rxi
cm�1
ryj

Þ� − hZ (m) can be expressed as:

HðmÞ ¼ �
Xm
i¼1

Xm
j¼1

ngij
L

ln

Cm�1
ri

Cm�1
rj

22ðm�1Þ
ngij
L

0@ 1A: ð55Þ

Furthermore, for every positive real number x ∊ ℝ, −ln (x) ≥ 1−x (the equality will hold when x = 1). Let us

remember that 2m−1 = (1+1)m−1 =
Pm�1

i¼0
Cm�1

i . Using these results, it is easy to see that the statistics of expression

(55) verifes that:

HðmÞ >
Xm
i¼1

Xm
j¼1

ngij
L

1�
Cm�1

ri
Cm�1
rj

22ðm�1Þ
ngij
L

0@ 1A ¼ 0:

Therefore, we have obtained that, under dependence of order less than m:

HðmÞ > 0: ð56Þ

Let 0 < C < ∞ with C ∊ ℝ and R with large enough so that

C
2L

< HðmÞ: ð57Þ
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Then

Pr bUðmÞ > C
h i

¼ Pr 2LHðmÞ > C½ �

¼ Pr HðmÞ > C
2L

� �
:

So, for equation (37) we have

plim
L!1

bUðmÞ > C
� �

¼ 1;

as desired.▪
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