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1. Introduction 
Tham, Velez-Pareja and Kolari (2010) derived the formula for the cost of equity 

when the discount rate for the tax shields, TS, is the levered cost of equity and showed that 

the formula works for perpetuities and finite cash flows. This formula was later used by 

Kolari and Velez-Pareja, (2010) where they show that with this framework, an optimal 

capital structure for perpetuities without growth is found.  

 
This paper shows how to find the optimal leverage for finite cash flows in two 

cases: with a unique and constant leverage and with varying leverage for each period; in 

addition, a general formula for perpetuities with constant growth is presented. The paper 

also contains simple numerical examples to illustrate the procedure. Each case tests for 

consistency. In both cases the discount rate for the tax shields is the cost of levered equity, 

Ke as proposed in Tham, Velez-Pareja, and Kolari (2010) and Kolari and Velez-Pareja, 

(2010). The formula for Ke that will be extensively used in this work is  

 
.

                                                                                                                 

In the previous formula ψt stands for the discount rate of the tax shield, Kut 

corresponds to the unlevered cost of equity, Dt-1 equals the debt level, and the value of the 

unlevered company is denoted by VUt-1. Note that the sub-indexes “t” and “t-1” are used to 

denote two successive periods of time. 

2. The case of finite periods and constant leverage 
In this case the procedure maximizes the levered value with a period-to-period 

constant leverage subject to the restriction that its value must be a number between 0 and 1. 

Thus, the optimizing model is 

 
Max VL 
Subject to 
0 ≤ D% ≤ 1 
VL is levered value and D% is the constant leverage 

The model is constructed assuming some input variables such as corporate tax rate 

T, cost of debt, Kdt, unlevered cost of equity, Kut, constant leverage, D% and free cash 

flow, FCFt. Table 1, presented next, depicts the initial values for those variables; as said, 
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only D% is a changing variable in the model. Other input variables are constant (for the 

sake of exposition clarity, input variables are shown in shaded cells). 

 
Table 1. Input Data 

Year 1 2 3 4 
T 35% 35% 35% 35%

Kd 11.00% 11.00% 11.00% 11.00%
Ku 15.00% 15.00% 15.00% 15.00%
D% 50.0000%

FCF 17.00 20.00 22.00 25.00 

The model makes extensive use of the basic cash flow and value equilibrium 

equations for any period t, posed by Modigliani and Miller (1958) as follows: 

 
CCFt = FCFt+ TSt = CFDt + CFEt                 (2) 

 

Where CCF is capital cash flow, FCF is free cash flow, TS is tax shields, CFD is 

cash flow to debt and CFE is cash flow to equity. 

 
VLt = VUt + VTSt = Et + Dt                  (3) 

Equations (2) and (3) are used to test consistency, because compliance with them 

leads to a perfect matching among different methods of valuation. Recall that all valuation 

methods that use discounted cash flows have to provide the same answer with no rounding 

errors. From the input data intermediate and temporary results are calculated. These are: 

debt D at end of period, debt payment as Dt – Dt-1, interest charges calculated as Dt-1.Kdt, 

tax shields TS as Dt-1.Kdt.T, cash flow to debt, CFDt, as the sum of debt payment plus 

interest charges, cash flow to equity solving CFEt from (2), firm unlevered value VU as the 

present value of FCF at Ku, Ke according to (1), VTS as the present value of TS at Ke, and 

the unlevered value of equity, as VL - D - VTS. These values are depicted in Table 2. The 

calculation of values with the different methods below is temporary until circularity is 

solved and the optimizing procedure is applied.  

In this case we find two stages where circularity appears: one is defining debt, D 

which is needed to define CFD, TS and CFE. The second stage is defining discount rates 

for CCF and FCF as in calculating value with WACC and FCF. Hence, the first action to be 

done is enabling the iteration feature in the spreadsheet. 
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Table 2. Intermediate and temporary values 

Year 0 1 2 3 4 

VU = PV(FCL a Ku) 58.66 50.46 38.03 21.74 

Debt D at end of period 30.50 26.04 19.48 11.05 - 

Debt payment 4.46 6.56 8.43 11.05 

Interest charges 3.36 2.86 2.14 1.22 

Tax shields TS 1.17 1.00 0.75 0.43 

CFD 7.82 9.43 10.58 12.26 

CFE = FCF - CFD + TS 10.36 11.58 12.17 13.16 

Ke = Ku + (Ku-Kd)D/(VU- D)1 19.33% 19.27% 19.20% 19.13% 

VTS 2.34 1.62 0.93 0.36 

E- VTS= VL-D-VTS 28.16 24.42 18.55 10.69 

 

When debt is known, methods such as the Adjusted Present Value, APV, do not 

present circularity. In this case it does because debt is not known and TS depends on debt. 

The first method is the Adjusted Present Value, APV. In this case, the value of TS is 

calculated with Ke and VL is a temporary value because TS depends on D and D depends 

on VL. 

Table 3a. Method 1: APV. Temporary Values 

Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00  

PV(FCF at Ku) 58.66 50.46 38.03 21.74
 

PV(TS at Ke) 2.34 1.62 0.93 0.36
 

Total value, VL 61.01 52.08 38.96 22.10
 

Debt, D 30.50 26.04 19.48 11.05  

There is circularity between tables 2 and 3.  Using Solver we optimize on D% and 

obtain D%Opt = 75,2587%. 

                                                            
1 In the tables that follow time sub indexes are eliminated to make it clear the reading. It is understood 

that TS, debt and equity values (and D% and E%) are situated in the previous period. 
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Exhibit 1. Dialog box from Solver when the constant leverage optimizing model is 
introduced 

 

 

Table 3b. Optimal Value with APV 

Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00 

PV(FCF at Ku) 58.66 50.46 38.03 21.74
 

PV(TS at Ke) 3.03 2.16 1.27 0.50
 

Total value, VL 61.70 52.62 39.31 22.24
 

Debt, D 46.43 39.60 29.58 16.74  

 

The second method calculates the value of levered equity and VL is the sum of debt 

and equity. This method is depicted in tables 4 and 5. 
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Table 4. Intermediate and Temporary Values for Valuing E 

Year 0 1 2 3 4 

VU = PV(FCL a Ku) 58.66 50.46 38.03 21.74 

Debt D at end of period 38.29 31.16 22.27 12.07 - 

Debt payment 7.13 8.89 10.20 12.07 

Interest charges 4.21 3.43 2.45 1.33 

Tax shields TS 1.47 1.20 0.86 0.46 

CFD 11.34 12.31 12.65 13.40 

CFE = FCF - CFD + TS 7.13 8.89 10.20 12.07 

E- VTS= VL-D-VTS 20.37 19.31 15.76 9.67 
 

Table 5a. Method 2: Market Equity Value. Temporary Value (1) 
Year 0 1 2 3 4 

CFE 7,13 8,89 10,20 12,07
(1) Market equity value PV(CFE at Ke) 38,29 31,16 22,27 12,07 -
(2) Value of debt 38,29 31,16 22,27 12,07 
(3) Ke =Ku + (Ku-Kd).D/(VU - D)  
(4) VL = E + D 76,58 62,32 44,54 24,14 

 

We calculate E with an initial Ke = 0 in order to avoid a division by zero. Calculating Ke 

we have 

Table 5b. Method 2: Market Equity Value. Temporary Value (2) 

Year 0 1 2 3 4 

CFE 10.36 11.58 12.17 13.16

(1) Market equity value PV(CFE at Ke) 30.50 26.04 19.48 11.05 -

(2) Value of debt 30.50 26.04 19.48 11.05 

(3) Ke =Ku + (Ku-Kd).D/(VU - D) 19.33% 19.27% 19.20% 19.13%

(4) VL = E + D 61.01 52.08 38.96 22.10 

 

As in method 1, table 4 depends on table 5. When Solver is used to find optimal D% we 

find D% = 75,2587% and values are 
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Table 5c. Method 2: Market Equity Value. Optimal Value 

Year 0 1 2 3 4 

CFE 6.85 7.15 7.04 7.06

(1) Market equity value PV(CFE at Ke) 15.26 13.02 9.72 5.50 -

(2) Value of debt 46.43 39.60 29.58 16.74 

(3) Ke =Ku + (Ku-Kd).D/(VU - D) 30.18% 29.58% 29.00% 28.39%

(4) VL = E + D 61.70 52.62 39.31 22.24 
 

Using the CCF and the weighted average cost of capital for the CCF, WACCCCF, 

levered value is obtained. Tham and Velez-Pareja (2004) present the general formulation 

for WACCCCF as  

 

WACCt
CCF = Kut-(Kut-ψt). /                   (4a) 

 

When ψ, the discount rate for TS is Ke, equation (4a) becomes 

 

WACCt
CCF = Kut-(Kut-Ket). /                   (4b) 

 

Valuating CCF at WACCCCF is the third method to value the cash flows. This is 

depicted in Tables 6 and 7. 
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Table 6. Intermediate and temporary values 

Year 0 1 2 3 4 

VU = PV(FCL a Ku) 58.66 50.46 38.03 21.74 

Debt D at end of period 44.23 34.88 24.21 12.75 -

Debt payment 9.35 10.67 11.47 12.75

Interest charges 4.87 3.84 2.66 1.40

Tax shields TS 1.70 1.34 0.93 0.49

CFD 14.22 14.51 14.13 14.15

CFE = FCF - CFD + TS 4.49 6.83 8.80 11.34

Ke = Ku + (Ku-Kd)Dt-1/(VUt-1 - Dt-1) 27.26% 23.95% 22.01% 20.67%

VTS 2.89 1.97 1.10 0.41 

VU-D 14.43 15.58 13.82 8.99 

 
 

 
 Table 7a. Method 3: CCF and WACCCCF. Temporary Values (1).  

Year 0 1 2 3 4 
Capital Cash Flow (CCF) = CFD + CFE  18.70  21.34  22.93   25.49 
WACCCCF = Ku-(Ku-Ke).VTS/VL  
PV(CCF) = VL  88.47  69.77  48.42  25.49  

 

Previous table is a temporary one because there is circularity between WACCCCF 

and VL. The temporary VL is calculated with a WACCCCF of zero. Introducing WACCCCF, 

we obtain, 

 Table 7b. Method 3: CCF and WACCCCF Temporary value (2). 
Year 0 1 2 3 4 

Capital Cash Flow (CCF) = CFD + CFE 18.17 21.00 22.75 25.43
WACCCCF = Ku-(Ku-Ke).VTS/VL 15.17% 15.13% 15.10% 15.07%
PV(CCF) = VL 61.01 52.08 38.96 22.10 

 

Optimizing on D% we find D% = 75,2587% and values are 

Table 7c. Method 3: CCF and WACCCCF. Optimal Value. 
Year 0 1 2 3 4 

Capital Cash Flow (CCF) = CFD + CFE 18.79 21.52 23.14 25.64
WACCCCF = Ku-(Ku-Ke).VTS/VL 15.75% 15.60% 15.45% 15.30%
PV(CCF) = VL 61.70 52.62 39.31 22.24 
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The popular textbook formula for WACC for the FCF is the fourth method. As in 

the case of CCF, there is circularity because the calculation of D% depends on VL. 

 

Table 8a. Method 4: Traditional Textbook WACC. Temporary Values (1). 
Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00
(1) VL at t=PV(FCF at WACC) 84.00 67.00 47.00 25.00 
Contribution of debt to WACC  
(2)  D% 50.00% 50.00% 50.00% 50.00%
(3)  Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 3.58% 3.58% 3.58% 3.58%
(4a) Debt 42.00 33.50 23.50 12.50 
Contribution of equity to WACC  
(5) E%=1-D% 50.00% 50.00% 50.00% 50.00%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 25.08% 22.90% 21.47% 20.41%
(7) Contribution Ke.E% to WACC 12.54% 11.45% 10.73% 10.21%
(8) WACC = Ke.E% + Kd.(1-T).D%

 

VL is a temporary value because WACCFCF has not been calculated because of 

circularity. When we introduce WACCFCF, we find 

Table 8b. Method 4: Traditional Textbook WACC. TemporaryValue (2). 
Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00
(1) VL at t=PV(FCF at WACC) 61.01 52.08 38.96 22.10 
Contribution of debt to WACC  
(2)  D% 50.00% 50.00% 50.00% 50.00%
(3)  Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 3.58% 3.58% 3.58% 3.58%
(4a) Debt 30.50 26.04 19.48 11.05 
Contribution of equity to WACC  
(5) E%=1-D% 50.00% 50.00% 50.00% 50.00%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 19.33% 19.27% 19.20% 19.13%
(7) Contribution Ke.E% to WACC 9.67% 9.63% 9.60% 9.57%
(8) WACC = Ke.E% + Kd.(1-T).D% 13.24% 13.21% 13.18% 13.14%

 

Optimizing on D% we find D%Opt = 75,2587% and values are 
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Table 8c. Method 4: Traditional Textbook WACC. Optimal Value. 
Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00
(1) VL at t=PV(FCF at WACC) 61.70 52.62 39.31 22.24 
Contribution of debt to WACC  
(2)  D% 75.26% 75.26% 75.26% 75.26%
(3)  Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 5.38% 5.38% 5.38% 5.38%
(4a) Debt 46.43 39.60 29.58 16.74 
Contribution of equity to WACC  
(5) E%=1-D% 24.74% 24.74% 24.74% 24.74%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 30.18% 29.59% 29.00% 28.39%
(7) Contribution Ke.E% to WACC 7.47% 7.32% 7.17% 7.02%
(8) WACC = Ke.E% + Kd.(1-T).D% 12.85% 12.70% 12.56% 12.40%

 

Tham and Velez-Pareja (2004) present the general formulation for WACCFCF as  

WACCt
FCF = Kut- TSt⁄  - (Kut-ψt). /                                       (5a) 

When ψ is Ke then (5a) becomes 

WACCt
FCF = Kut- TSt⁄  - (Kut-Ket). /                   (5b) 

Table 9a. Method 5: VL with WACCFCF from (5b). Temporary Values. 
Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00
(1) Value VL 84.00 67.00 47.00 25.00 
(2) WACCFCF = Ku - TS/VL - (Ku-Ke).VTS/VL

 

In this stage we have 

Table 10. Debt and Cash Flows. Temporary Values (1). 

Year 0 1 2 3 4 

Debt D at end of period 42.00 26.04 19.48 11.05 -

Debt payment 15.96 6.56 8.43 11.05

Interest charges 4.62 2.86 2.14 1.22

Tax savings TS 1.62 1.00 0.75 0.43

VP(FCL a Ku) 58.66 50.46 38.03 21.74 

Ke = Ku + (Ku-Kd)Dt-1/(Vunt-1 - Dt-1) 25.08% 19.27% 19.20% 19.13%

VTS 2.59 1.62 0.93 0.36 
 

Introducing WACCFCF with these data we have 
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Table 10a. Method 5: VL with WACCFCF from (5b) Temporary Values (2). 

Year 0 1 2 3 4 

FCL 17.00 20.00 22.00 25.00

(1) Value 61.01 52.08 38.96 22.10 
(2) WACC = Ku - TSt/Vt-1 - (Ku-
Ke)VTSt-1/VLt-1 13.24% 13.21% 13.18% 13.14%

 

Now we optimize on D% and D%Opt = 75,2587%. 

Table 10b. Method 5: VL with WACCFCF from (5b). Optimal Value. 

Year 0 1 2 3 4 

FCL 17.00 20.00 22.00 25.00

(1) Value 61.70 52.62 39.31 22.24 

(2) WACC = Ku - TSt/Vt-1 - (Ku-
Ke)VTSt-1/VLt-1 

12.85% 12.70% 12.56% 12.40%

 

As can be seen, all methods yield the same and identical value. This is, they are 

consistent. Note that given a temporary leverage of 50%, all methods yield the same value, 

this is, 61.01. Now, using Excel Solver, the objective cell might be any of the values (in 

this case, the temporary one, 61.01 obtained with the APV) and set Solver to maximize that 

value, changing the cell where D% is written and subject to 0 ≤ D% ≤ 1. The solution by 

Solver is D% = 75.2587%. With this optimal D% the previous tables show the optimal 

values. Using one way tables one can show the behavior of value, unlevered value and 

VTS. In that table we observe the maximum value at D% = 75.2587%. 

Table 11. Behavior of VL and VTS depending on D% 
D% VL VTS Vun E-VTS

0% 58.7 - 58.7 58.7
10% 59.2 0.5 58.7 52.7
20% 59.6 1.0 58.7 46.7
30% 60.1 1.4 58.7 40.6
40% 60.6 1.9 58.7 34.4
50% 61.0 2.3 58.7 28.2
60% 61.4 2.7 58.7 21.8

75.2587% 61.7 3.0 58.7 12.2
80% 61.6 3.0 58.7 9.4
90% 60.9 2.2 58.7 3.9

99.98% 58.7 0.0 58.7 0.0
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This behavior is depicted in Exhibit 2. 

 

Exhibit 2. Optimal capital structure 

  

 

 When the leverage is allowed to vary from year to year, the procedure is similar, 

except that when optimizing the procedure is subject to several variables (several D%, one 

for each year). 

 Next the reader will find the tables for a non constant leverage and maximum 

value. Obviously, in this case it is not possible to graph values against leverage. The inputs 

are identical to table 1, except that D% is variable from year 1 to year 4. In this case the 

procedure maximizes the levered value changing variable leverage subject to the restriction 

that leverage should be a value between 0 and 1. 

The optimizing model is 

Max VL 
Subject to 
0 ≤ D%t ≤ 1 
VL is levered value and D%t is period-to-period leverage. 

Using Solver and introducing the previous mathematical model, the optimal values 

of D% are found.  
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Exhibit 3. Dialog box from Solver when the optimizing model is introduced 

 

 

In this case we do not show the intermediate temporary tables. Next tables show the 

final result. 

 

Table 12. Optimal values for capital structure, variable D% 

Year 0 1 2 3 4 

D% 72.983% 75.600% 78.566% 82.324% 

FCF 17.00 20.00 22.00 25.00

Debt D at end of period 45.04 39.79 30.90 18.32 

Debt payment 5.25 8.90 12.57 18.32

Interest charges 4.95 4.38 3.40 2.02

Tax shields  TS 1.73 1.53 1.19 0.71

CFD 10.20 13.28 15.97 20.34

CFE = FCF - CFD + TS 8.53 8.26 7.22 5.37

PV(FCL a Ku) 58.66 50.46 38.03 21.74 

Ke = Ku + (Ku-Kd).D/(VU - D) 28.22% 29.92% 32.31% 36.45%

VTS 3.05 2.17 1.29 0.52 
 

 
Next tables show the optimal values obtained after using Solver for variable D%. 

Table 19 depicts levered value, VL calculated with CCF and WACCCCF. 
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Table 13. Method 1: CCF and WACCCCF with optimal variable D% 

Year 0 1 2 3 4 

Capital Cash Flow (CCF) 18.73 21.53 23.19 25.71

WACCCCF = Ku-(Ku-Ke).VTS/VL 15.65% 15.62% 15.57% 15.50%

PV(CCF) = VL 61.71 52.64 39.32 22.26 
 

APV is the most reliable method to calculate the value of a firm. It is depicted in 

table 20. 

Table 14. Method 2: APV with optimal variable D% 

Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00 

Tax shields  TS 1.73 1.53 1.19 0.71 

PV(FCF at Ku) 58.66 50.46 38.03 21.74

PV(TS at Ke) 3.05 2.17 1.29 0.52

Total value VL 61.71 52.64 39.32 22.26
 

Method 3 is depicted in Table 15. It shows the textbook formula for WACCFCF and 

the levered value VL. 

Table 15. Method 3: Textbook formula for WACCFCF with optimal variable D% 

Year 0 1 2 3 4 

FCF 17.00 20.00 22.00 25.00 

(1) VL at t = PV(FCF at WACC) 61.71 52.64 39.32 22.26 

Contribution of debt to WACC 

(2)  D% 72.98% 75.60% 78.57% 82.32%

(3)  Kd.(1-T) 7.15% 7.15% 7.15% 7.15%

(4) Contribution Kd.D%.(1-T) 5.22% 5.41% 5.62% 5.89%

Contribution of equity to WACC 

(5) E% = 1-D% 

(6) Ke = Ku + (Ku-Kd).D/(VU - D) 27.02% 24.40% 21.43% 17.68%

(7) Contribution Ke.E% to WACC 28.22% 29.92% 32.31% 36.45%
(8) WACC = Ke.E% + Kd.(1-T).D%  7.62% 7.30% 6.93% 6.44%
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Next table depicts the calculation of market levered equity with optimal leverage, 

D%. Table 16 includes the calculation of VL using equation (3). 

 

Table 16. Method 4: Market equity value, with optimal variable D% 

Year 0 1 2 3 4 

CFE = FCF - CFD + TS  
 

8.47 
 

8.19 
  

7.16  
 

5.32 

(1) Market equity value PV(CFE at Ke) 16.67 12.84 8.43 3.93 -

(2) Value of debt 45.04 39.79 30.90 18.32 
(3) Ke =Ku + (Ku-Kd)D/(VUn - D) 28.22% 29.92% 32.31% 36.45%
(4) VL  61.71 52.64 39.32 22.26 

 

Finally, method 5 in table 17 depicts the calculation of value with the general 

WACCFCF when Ke is the discount rate for TS. 

 
 

Table 17. Method 5: VL with WACCFCF from (5b) with optimal variable D% 

Year  0 1 2 3 4 

FCL 17.00 20.00 22.00 25.00

(1) VL 61.71 52.64 39.32 22.26 
(2) WACC =  
Ku - TS/VL - (Ku-Ke).VTS/VL 12.84% 12.70% 12.54% 12.33%

 
From an Optimization Theory point of view, the restrictions present in a problem 

play the role of reducing the space of feasible solutions. Hence, that space is greater (or in 

extremely special cases, equal) in the variable leverage problem than in the constant one, 

which implies that in almost any case the optimized VL with variable leverage will yield 

better solutions than the obtained in the constant case. This is due to the fact that the space 

of feasible solutions in the constant case is always a sub-set of the corresponding space in 

the variable leverage case. Hence, the difference between the solution with constant 

leverage and variable leverage is as expected. 

On the other hand, the analytical formulation for constant leverage is almost 

intractable. We consider that in the real world what happens is a variable leverage instead 

of a constant one, although that is a managerial decision and the constant leverage could be 

eventually, achieved.  
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3. A General Analytical Solution for Period-to-Period Variable Leverage  

 Next, closed-form analytical expressions for the optimal capital structure calculation 

in two different scenarios are presented. The first one corresponds to the finite period case 

and the detailed derivation of the formula can be found in Appendix A. 

 The problem to be solved involves finding a set of optimal levels of debt for every 

period that, when put together, maximize the value of the levered firm. In principle, this 

objective can be achieved by treating the level of debt in every single period as an unknown 

variable, writing down a formula for the company levered value as a function of those 

unknowns, finding de derivatives of that function with respect to the debt level in every 

period, equaling to zero every one of those derivatives, constructing a system with the 

equations obtained, an solving the system for the optimal debt in every period. Nonetheless, 

this process is extremely cumbersome and impractical, due not only to the need of solving 

the equation system, but also to the fact that the optimal debt level in an arbitrary period “t” 

is a function of the debt levels in all posterior periods; this, in turn, implies that the 

derivatives get more complex as the number of periods increases. 

 Fortunately, the last mentioned fact provides a way to find an elegant solution to the 

problem. First, observe that the optimal debt level in the last period “n-1” does not depend 

on the debt of any previous period (it is assumed that the debt level in period “n” is zero 

and the outstanding value in period n-1 is paid with the concomitant reduction in the CFE 

in period “n”); in consequence, the optimal debt level for that period can be found in an 

independent way. Accordingly, this optimization problem involves a single variable of 

choice and can be solved in a relatively straightforward way. Next, and knowing that the 

capital structure of period “n-1” has been optimized and correspondingly, that the value of 

the levered company has been maximized in that period, it is possible to find using that 

results (the optimal debt level for period “n-1” can be treated now as a constant) the optimal 

debt level for the period “n-2” in an analogous manner. This procedure can be repeated 

until period zero is reached, thus obtaining the optimal set of debt for every period that 

maximize the present value of the levered company. 

 In consequence, the result of this analysis (see Appendix A for details, as mentioned 

above) is a recursive expression that should be applied backwards in time (this is, starting 

from the next to last period “n-1” and using the results obtained to extend the process until 
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period zero is reached) which, in addition, the procedure does not suffer of any circularity 

issues. The mentioned expression is shown next: 

 

,
.

. .
.

. . .
                   

 
This formula (6) is the same (A34) derived in Appendix A. Observe that the optimal 

debt level in “t-1” depends only on values in “t”, which are all known. The only required 

value corresponding at period “t-1” is the unlevered value of the company which, by 

definition, does not depend on the actual or posterior debt levels and hence, can be found as 

the present value of the future FCFs discounted at their respective Ku. 

Using (6) with the example from table 12 we have 

Table 18a Calculation of DOpt and VL 
Year 0 1 2 3 4 

Ku 15.00% 15.00% 15.00% 15.00%

Kd 11.00% 11.00% 11.00% 11.00%

ψ 28.22% 29.92% 32.31% 36.45%

Ke 28.22% 29.92% 32.31% 36.45%

T 35.00% 35.00% 35.00% 35.00%

FCF  17.0000  20.0000  22.0000  25.0000

VU  58.6647  50.4644  38.0340  21.7391  0.0000

CFE  8.5342  8.2569  7.2180  5.3679

E  16.6724  12.8434  8.4286  3.9341  0.0000

TS  1.7340  1.5320  1.1895  0.7054

VTS  3.0463  2.1720  1.2897  0.5170  0.0000

DOpt from (6)  45.0385  39.7930  30.8951  18.3221

VL = E + D  61.7109  52.6364  39.3237  22.2561  0.0000

APV = VU + VTS  61.7109  52.6364  39.3237  22.2561  0.0000

D% = DOpt/VL 72.9831% 75.5998% 78.5660% 82.3237%

VU - D  13.6261  10.6714  7.1389  3.4171
 
 
As can be seen the results are identical to the ones obtained using Solver. To 

illustrate the calculation of DOpt we show for t -1 = 0 the value of debt in table 24b using eq. 

(6). 
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Table 18b. Calculation of components of Eq. (6) 

VU . 1 Ku
1 Kd

 
60.77871247 

1 Kd
1 Ku

 
0.965217391 

VTS . Ku Kd
VU . 1 Ku . Kd . T

 
0.03344884 

(6) 45.03854992 
 
Now we illustrate the calculations for the two first periods of our example. Suppose 

that we wish to optimize the optimal capital structure of a company which future FCFs 

equal the first two years of the one shown in Table 1. The results, in this case will be: 

 
Table 19. Application of formula (6) 

Year 0 1 2 

Ku 15.00% 15.00% 

Kd 11.00% 11.00% 

T 35.00% 35.00% 

FCF 17.00 20.00 

TS  0.93       0.56  

VTS 1.02 0.41 0.00 

CFE = FCF - CFD + TS  5.64  4.29  

VU 29.91 17.39 0.00 

(1) Market equity value       6.65  3.14  0.00  

(2) Value of debt 24.28 14.66 0.00 

(3) Ke =Ku + (Ku-Kd).D/(VU-D)  32.25% 36.45% 

(4) VL  30.93 17.80  0.00  
 

DOPT,
17.39 . 1 0.15

1 0.11
. 1 1

1 0.11
1 0.15

. 1
0.00 . 0.15 0.11

17.39 . 1 0.15 . 0.11 . 0.35
14.66 

DOPT,
29.91 . 1 0.15

1 0.11
. 1 1

1 0.11
1 0.15

. 1
0.41 . 0.15 0.11

29.91 . 1 0.15 . 0.11 . 0.35
24.28 

These results can be represented in a graphic as follows: 
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Exhibit 4: VL0 for two periods as function of debt level at t=0 and t=1 

 

Exhibit 5: VL0 for two periods as function of debt level at t=0 and t=1 

 

Observe that formula (6) does not require any previous calculation of Ke, CFE or 

equity value. In consequence, the optimal level of debt resulting from its application can be 
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plugged directly into expression (7) to find the optimal leverage without carrying the 

mentioned calculations (see Appendix A for details) 

 

%
. . .

. . . . . .
     

 

Expression (7) is the same as (A40) in Appendix A and is used to graph VL as a 

function of leverage (see Figures 3 - 4): 

 
Exhibit 6: VL0 for two periods as function of leverage at t=0 and t=1 
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Exhibit 7: VL0 for two periods as function of leverage at t=0 and t=1 

  
The results obtained by means of (7) are D%=82.3237% for t=1 and a leverage of 

D%=78.5045% for t=0. It is crucial to note that the behavior observed in Exhibits 4 to 7 can 

be depicted graphically because they were constructed assuming the existence of only two 

periods. Thus, a similar procedure for a greater number of periods would require a higher-

dimensional space to be visualized; nevertheless this number does not restrict the existence 

of an optimal capital structure and formula (6) still holds.  

In order to complete the exposition, the case for optimal capital structure in 

perpetuities with constant growth is now presented. The formula for finding the optimal 

debt level is as follows (see Appendix B for details):  

 

, . .                                                                                   

Formula (8) is the same as formula (B40) from Appendix B. The particular case of a 

non-growing perpetuity corresponds to g=0 and (8) collapses to 

, . .                                                                                                        

Formula (9) is the same formula (B41a) in Appendix B. Since in the mentioned case 

VUt-1=FCFt/Kut, expression (B41a) can be presented in the following equivalent form 

(which is the one derived by Tham et al, 2010) and can be found in Appendix B as (B41b): 
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, .                                                                                                                 

4. Concluding Remarks 
This paper has shown the procedure to calculate value and optimal capital structure 

assuming Ke as the discount rate for TS for finite cash flows. Several scenarios were 

analyzed: constant leverage and variable leverage (D% different for each period), and 

closed-form analytical solutions for a finite number of periods and perpetuities. Five 

popular methods were used and all of them give the same identical answer.  

Using an analytical formulation to calculate optimal debt, the differences in value 

are negligible. In this particular case, the differences between constant and variable 

leverage are very small: 0.009%; nonetheless, this paper does not claim that this difference 

is a general behavior when using one or other approach, but it remains clear that the 

variable leverage approach leads to equal or higher values of the levered company due to 

the value of the flexibility of adapting the leverage every period as a function of the 

expected future cash flows. 

In addition, it was assumed that the cost of debt remains constant while changing 

the debt level in a particular period in order to maximize it. Nonetheless, more work has to 

be done in order to identify the behavior of Kd as a function of leverage. Consequently, our 

formulation is open to include a variable Kd, although linked to leverage which will create 

a circularity (observe that we are not referring to a Kd that is allowed to change from period 

to period because the herein derived formulas account for that kind of flexibility; we refer 

to the cost of debt in a particular period that could be allowed to change as a function of a 

variation in leverage). 
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Appendix A 

Derivation of the general formula for the optimal capital structure when there are a 
finite number of periods and ψt = Ket 
 

We start from the following basic tenets of finance: 

VL E D VU VTS                                                                                                                      A1  

TS D . Kd . T                                                                                                                                                              A2  

VTS VTS . 1 ψ TS                                                                                                                                       A3  

VTS
VTS TS
1 ψ

                                                                                                                                                       A4  

And the expression for Ke as the discount rate for TS (See Tham, Velez-Pareja & 

Kolari 2010): 

Ke ψ Ku
Ku Kd . D
VU D

                                                                                                                   A5  

The goal of this section is to find the value of Dt-1 that maximizes the value of the 

levered firm, VLt-1. It is necessary to note that is much easier to find the optimum using the 

absolute debt level Dt-1 instead of the leverage D% = Dt-1 / (Et-1 + Dt-1) since the latter 

yields more complex expressions. In consequence, the procedure consists of finding the 

derivative of VLt-1 with respect to Dt-1, equal it to zero, and solve the resulting equation 

with Dt-1 as the unknown variable to find the optimum.  

In order to find the mentioned derivative the chain rule of differential calculus is 

used due to the fact that the resulting expression will be a product of several factors, which 

makes easier to solve the equations for the optimal values (although, as will be seen, there 

is only one): 

 
dVL
dD

dVL
dVTS

.
dVTS
dψ

.
dψ
dD

                                                                                                                             A6  

 
Since expressions for each of the factors on the right hand side (RHS) of (A6) are 

needed, we proceed to find the third one in the first place by taking derivatives at both sides 

of (A5) with respect to Dt-1: 

 

dψ
dD

dKu
dD

VU D .
d

dD Ku Kd . D Ku Kd . D .
d

dD VU D

VU D
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dψ
dD

0
VU D . Ku Kd Ku Kd . D . 1

VU D
 

dψ
dD

VU D . Ku Kd Ku Kd . D
VU D

 

dψ
dD

VU D D . Ku Kd
VU D

 

dψ
dD

VU . Ku Kd
VU D

                                                                                                                                           A7  

Note that VUt-1 and Kut-1 are treated as constants since they are, by definition, 

independent of debt level. In contrast, Kdt may increase with leverage, a situation that 

would demand an expression for the cost of debt as a function of Dt-1; nonetheless, in this 

article Kdt is assumed for simplicity considerations to be independent of debt level. Thus, 

taking the derivative of (A4) with respect to t, we have that 

 

dVTS
dψ

1 ψ .
d
dψ VTS TS VTS TS .

d
dψ 1 ψ

1 ψ
                                                               A8  

dVTS
dψ

1 ψ .
d
dψ VTS D . Kd . T VTS D . Kd . T .

d
dψ 1 ψ

1 ψ
   A9 A2  in  A8  

dVTS
dψ

1 ψ . Kd . T.
dD
dψ VTS D . Kd . T . 1

1 ψ
                                                                        A10  

dD
dψ

dψ
dD

                                                                                                                                                        A11  

dVTS
dψ

1 ψ . Kd . T.
VU D

VU . Ku Kd VTS D . Kd . T

1 ψ
      A12 A7 , A11  in  A10  

 
Observe that VTSt is also treated as a constant, which is of crucial importance; this 

stems from the fact that it is a function of ψt+1 and values of ψ of further periods (if they 

exist), but is independent of ψt. Nevertheless, this is not true in the case of TSt, since it 

depends on Dt-1 which, in turn, is related to ψt via (A5).  

Now we proceed to find the derivative of the firm’s levered value with respect to the 

present Value of Tax Shield (VTS) using (A1): 

 
dVL
dVTS

dVU
dVTS

dVTS
dVTS

                                                                                                                                  A13  
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Since the firm’s unlevered value is independent of VTS, 

 

dVL
dVTS

0 1 1                                                                                                                                                     A14  

 
Putting the factors (A14), (A12) and (A7) together in (A6) and setting the resultant 

derivative equal to zero, we have that 

 
dVL
dD

1 .

1 ψ . Kd . T.
VU DOPT,
VU . Ku Kd VTS DOPT, . Kd . T

1 ψ
.
VU . Ku Kd

VU DOPT,
0 

A15  

dVL
dD

1 ψ . Kd . T.
VU DOPT,
VU . Ku Kd VTS DOPT, . Kd . T

1 ψ
.
VU . Ku Kd

VU DOPT,

0                                                                                                                                                      A16  

The solutions for the optimal debt level DOPT,t-1 stemming from the first factor of 

(A16) are: 

 

1 ψ . Kd . T.
VU DOPT,
VU . Ku Kd VTS DOPT, . Kd . T

1 ψ
0 

1 ψ . Kd . T.
VU DOPT,
VU . Ku Kd

VTS DOPT, . Kd . T

0                                                                                                                                                      A17  

1 Ku
Ku Kd . DOPT,
VU DOPT,

. Kd . T.
VU DOPT,
VU . Ku Kd

VTS DOPT, . Kd . T 0 

       A18 A5  in   A17  

1 Ku . VU DOPT, Ku Kd . DOPT,
VU DOPT,

. Kd . T.
VU DOPT,
VU . Ku Kd

VTS DOPT, . Kd . T 0 
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1 Ku . VU DOPT, Ku Kd . DOPT, . Kd . T.
VU DOPT,
VU . Ku Kd

VTS DOPT, . Kd . T 0 

1 Ku . VU DOPT, . Kd . T.
VU DOPT,
VU . Ku Kd

Ku Kd . DOPT, . Kd . T.
VU DOPT,
VU . Ku Kd

VTS DOPT, . Kd . T 0 

1 Ku . VU DOPT, . Kd . T
VU . Ku Kd

DOPT, . Kd . T.
VU DOPT,

VU
VTS DOPT, . Kd . T

0 

1 Ku . Kd . T. VU DOPT,
VU . Ku Kd

DOPT, . Kd . T.
VU DOPT,

VU
1 VTS 0 

1 Ku . Kd . T. VU DOPT,
VU . Ku Kd

DOPT, . Kd . T.
VU DOPT, VU

VU
VTS 0 

1 Ku . Kd . T. VU DOPT,
VU . Ku Kd

DOPT, . Kd . T
VU

VTS 0 

1 Ku . VU DOPT,
VU . Ku Kd

DOPT,
VU

VTS
Kd . T

0 

1 Ku . VU DOPT,
Ku Kd

DOPT,
VU . VTS
Kd . T

0 

1 Ku . VU DOPT, DOPT, . Ku Kd
VU . Ku Kd . VTS

Kd . T
0 

1 Ku . VU 2. VU . DOPT, DOPT, DOPT, . Ku Kd
VU . Ku Kd . VTS

Kd . T
0 

DOPT, . Ku Kd 1 Ku 2. DOPT, . VU . 1 Ku
VU . Ku Kd . VTS

Kd . T

VU . 1 Ku 0 

DOPT, . 1 Kd 2. DOPT, . VU . 1 Ku
VU . 1 Ku . Kd . T VU . Ku Kd . VTS

Kd . T

0 

DOPT, . 1 Kd 2. DOPT, . VU . 1 Ku
VU . VU . 1 Ku . Kd . T Ku Kd . VTS

Kd . T

0 

, . . , .
. . . .

.
      

 

This is a quadratic equation in DOPT,t-1 that can be solved by means of the general 

formula: 
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.                                                                                                                                                           

. . . .
.

                                                                                              

,
√ . .

.
                                                                                                                                  

 

,

. . . .
. . . .

.

.
 

,          

DOPT,
1 Ku 1 Ku

1 Kd
VU .

VU . 1 Ku . Kd . T Ku Kd . VTS
Kd . T

1 Kd
VU

 

DOPT,
1 Ku 1 Ku

VU . 1 Ku . 1 Kd . Kd . T Ku Kd . 1 Kd . VTS
VU . Kd . T

1 Kd
VU

 

DOPT,
1 Ku 1 Ku 1 Ku . 1 Kd

Ku Kd . 1 Kd . VTS
VU . Kd . T

1 Kd
VU

 

DOPT,
VU
1 Kd

. 1 Ku 1 Ku 1 Ku . 1 Kd
Ku Kd . 1 Kd . VTS

VU . Kd . T
 

DOPT,
VU . 1 Ku

1 Kd
. 1

1 Ku
1 Ku

1 Ku . 1 Kd
1 Ku

Ku Kd . 1 Kd . VTS
VU . 1 Ku . Kd . T

 

DOPT,
VU . 1 Ku

1 Kd
. 1 1

1 Kd
1 Ku

1 Kd
1 Ku

VTS . Ku Kd
VU . 1 Ku . Kd . T

 

,
.

. .
.

. . .
                            

Equation (A25) has one root for a positive sign before the radical, and one for the 

negative sign; thus, we need to identify which one is consistent from a financial point of 

view: 
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DOPT,
VU

1 Ku
1 Kd

. 1 1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
                                             A26  

Kolari and Velez-Pareja (2010) show that VUt-1>Dt-1; otherwise, it would imply a 

negative value for the unlevered equity. In consequence: 

 
DOPT,
VU

1                                                                                                                                                                     A27  

1 Ku
1 Kd

. 1 1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1                        A28 A26  in  A27  

1 1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1 Kd
1 Ku

 

1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1 Kd
1 Ku

1                                                                  A29  

In addition, Kut must be greater than Kdt, by definition: 

 
1 Kd
1 Ku

1 0                                                                                                                                                           A30  

1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1 Kd
1 Ku

1 0                   A31 A30  and  A29  

 

1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
0                                                                                          A32  

 
In order to yield real roots, the expression under the radical must be positive and, 

consequently, (A32) holds only if the sign before the radical is negative: 

 
 

.
.

. . .
0                                                                                       

 

Hence, the formula for the optimal debt level in a specific period “t-1” is 

 

,
.

. .
.

. . .
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And, finally, for the second factor of (A16) we have that 

 

VU . Ku Kd
VU D

0 

VU . Ku Kd 0 

 

The former equation yields no solutions since its left hand side (LHS) is 

independent of the variable Dt-1. Going back to (A34), the following analysis looks for the 

conditions needed to obtain real roots from that equation; that is, under what conditions the 

expression under the radical is equal or greater than zero: 

 

1
1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
0 

1 Kd
1 Ku

. 1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1 

1
VTS . Ku Kd

VU . 1 Ku . Kd . T
1 Ku
1 Kd

 

VTS . Ku Kd
VU . 1 Ku . Kd . T

1 Ku
1 Kd

1 

1
1 Ku
1 Kd

VTS . Ku Kd
VU . 1 Ku . Kd . T

 

1 Kd 1 Ku
1 Kd

VTS . Ku Kd
VU . 1 Ku . Kd . T

 

Ku Kd
1 Kd

VTS . Ku Kd
VU . 1 Ku . Kd . T

 

.
. . .

                                                                                                                                    

 

Since (1 + Kdt), (1 + Kut), and Kdt.T must be positive, the only cases for which an 

optimal capital structure would not exist are those where the quotient (VTSt / VUt-1) is 

negative. This situation may be observed in firms with a limited duration such as 

concessions, in which the exploited asset (a highway, for instance) must be transferred to a 

third party (a local municipality, for instance) in optimal conditions at the end of the 

concession and, thus, demand an important investment in the last period. This could cause 
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the FCF of that period to be negative and, consequently, also VU would be negative in the 

previous period. 

 
Up to this point, an expression for the optimal debt level (A34) has been found, but 

it is still lacked a formula for the optimal leverage. In consequence, the following 

derivation presents an expression for the leverage D% in terms of Dt-1, Kdt, VUt-1, Kut and 

VTSt: 

 
VL E D VU VTS                                                                                                                      A1  

VTS
VTS TS
1 

                                                                                                                                                       A4  

TS D . Kd . T                                                                                                                                                              A2  

ψ Ku
Ku Kd . D
VU D

                                                                                                                                       A5  

ψ
Ku . VU D Ku Kd . D

VU D
 

ψ
Ku . VU Ku . D Ku . D Kd . D

VU D
 


VU .Ku D . Kd

VU D
                                                                                                                                        A36  

D%
D
VL

                                                                                                                                                                     A37  

VTS
VTS D . Kd . T

1
VU . Ku D . Kd

VU D

                                                                            A38 A36  in  A4  

VTS
VTS D . Kd . T

VU D VU . Ku D . Kd
VU D

 

VTS
VU D . VTS D . Kd . T
VU . 1 Ku D . 1 Kd

 

D%
D

VU
VU D . VTS D . Kd . T
VU . 1 Ku D . 1 Kd

                                           A39   A38  in  A37  

%
. . .

. . . . . .
             

 
In consequence, by means of (A40) and using DOPT,t-1 as the value for Dt-1, it is 

possible to find the optimal value for the leverage. Now, as a final step, we proceed to 

derive an expression for Dt-1 as a function of leverage, a result that can be used to plot VL 

as a function of leverage: 
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D . VU . 1 Ku D . 1 Kd

D%.VU . VU . 1 Ku D . 1 Kd

D%. VU D . VTS D . Kd . T  

D . VU . 1 Ku D . 1 Kd

D%.VU . 1 Ku D%. VU . D . 1 Kd

D%.VU D%.D . VTS D . Kd . T  

D . VU . 1 Ku D . 1 Kd

D%.VU . 1 Ku D%. VU . D . 1 Kd  D%. VU . VTS

D%.VU . D . Kd . T D%.D . VTS D%.D . Kd . T 

D . 1 Kd D%.Kd . T

D . VU . 1 Ku D%.VU . 1 Kd D%.VU . Kd . T D%. VTS

D%.VU . 1 Ku  D%. VU . VTS 0 

D . 1 Kd . 1 D%. T D . VU . 1 Ku D%. VU . 1 Kd . 1 T D%. VTS

D%.VU . VU . 1 Ku  VTS 0 

. . %. . . %. . . %.

%. . .                                                                         

Equation (A41) has a quadratic form and, thus, can be solved by means of the 

general formula 

 

√ . .
.

                                                                                                                                         

And the following values for A,B and C: 

 

. %.                                                                                                                                             

. %. . .                                                                

%. . .                                                                                                              

 
The full resulting expression is not shown in this document due to length 

considerations, but its numerical application is very straightforward. 
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Appendix B 

Derivation of the general formula for the optimal capital structure for perpetuities 
with constant growth when ψt = Ket 

 

The problem of deriving a general recursive formula for finding the optimal capital 

structure in every period of a valuation process with a finite number of them was solved in 

Appendix A. Thus, Appendix B focuses in solving the same problem for perpetuities, a 

process that is very similar to that presented in the previous appendix. Hence, the 

mentioned derivation starts from the following basic tenets of finance for perpetuities: 

 

E
CFE
Ke g

                                                                                                                                                                   B1  

VU
FCF
Ku g

                                                                                                                                                                B2  

VTS
TS

 g
                                                                                                                                                                B3  

VL E D VU VTS                                                                                                                      B4  

E D
FCF
Ku g

TS
 g

                                                                                           B5 B2 , B3  in  B4  

TS D . Kd . T                                                                                                                                                              A2  

CFE FCF D D D Kd . 1 T                                                                                                             B6  

D D . 1 g                                                                                                                                                               B7  

D D D . g                                                                                                                                                           B8  

CFE FCF D . g D . Kd D . Kd . T                                                                       B9 B8  in  B6  

CFE FCF D . Kd g TS                                                                                           B10 B6  in  B9  

 Ke                                                                                                                                                                              B11  

CFE
 g

D VU
TS

 g
                                                        B12 B1 , B2 , B3  and  B11  in  B4  

CFE TS
 g

VU D                                                                                                                                           B13  

FCF D . Kd g TS TS
 g

VU D                                                          B14 B10  in  B13  

FCF D . Kd g
 g

VU D  


FCF D . Kd g

VU D
g 


FCF D . Kd g g. VU D

VU D
 



 

34 
 


FCF D . Kd D . g VU . g D . g

VU D
 


FCF D . Kd VU . g

VU D
 



FCF . Ku g
Ku g D . Kd

FCF
Ku g . g

VU D
 



FCF . Ku g g
Ku g D . Kd

VU D
 



FCF . Ku
Ku g D . Kd

VU D
 


. .

                                                                                                                                       


VU .Ku Ku . D Ku . D D . Kd

VU D
 


Ku . VU D Ku Kd . D

VU D
 


.

                                                                                                                                    

Using the chain rule of differential calculus, we have: 
 

dVL
dD

dVL
dVTS

.
dVTS
d

.
d
dD

                                                                                                                          B18  

We now find expressions for every individual derivative in then LHS of (B18): 

 

dVTS
d

d
d

TS
 g

d
d

D . Kd . T
 g

 

dVTS
d

 g .
d
d D . Kd . T D . Kd . T.

d
d  g

 g
 

dVTS
d

 g . Kd . T.
dD
d D . Kd . T.

d
d

 g
 

dVTS
d

 g . Kd . T.
dD
d D . Kd . T.

d
d

 g
 

dVTS
d

Kd . T.  g
dD
d D

 g
                                                                                                             B19  
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dD
dψ

dψ
dD

                                                                                                                                                        A11  

dD
dψ

dψ
dD

VU D
VU . Ku Kd

                                                                              B20 A7  in  A11  

dVTS
d

Kd . T.
 g . VU D
VU . Ku Kd D

 g
                                                     B21 B20  in  B19  

dVTS
d

Kd . T.
 g . VU D D . VU . Ku Kd

VU . Ku Kd

 g
 


. .  . . .

. . 
                                              

dVL
dVTS

dVU
dVTS

dVTS
dVTS

                                                                                                                                  B23  

dVL
dVTS

0 1 1                                                                                                                                                     B24  

dVL
dD

1 .
Kd . T.  g . VU D D . VU . Ku Kd

VU . Ku Kd .  g
.
VU . Ku Kd
VU D

 

B25 B24 , B22 , A7  in  B18  

Now we equal the derivative of the levered value of the firm with respect to the debt 

level to zero in order to find the optimum: 

 

. .  . , , . .

. . 
.

.

,

 

 

First, we look for solutions stemming from the first factor of the LHS of (B25): 

 

Kd . T.  g . VU DOPT, DOPT, . VU . Ku Kd

VU . Ku Kd .  g
0 

Ku
Ku Kd . DOPT,
VU D

g . VU DOPT, DOPT, . VU . Ku Kd 0 

Ku g . VU DOPT, Ku Kd . DOPT,
VU DOPT,

. VU DOPT,

DOPT, . VU . Ku Kd 0 
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VU . Ku g Ku Kd Ku g . DOPT,
VU DOPT,

. VU DOPT, DOPT, . VU . Ku Kd

0 

FCF Kd g . DOPT,
VU DOPT,

. VU DOPT, DOPT, . VU . Ku Kd 0 

FCF Kd g . DOPT, . VU DOPT, DOPT, . VU . Ku Kd 0 

VU . FCF Kd g . DOPT, DOPT, . FCF Kd g . DOPT, DOPT, . VU . Ku Kd

0 

VU . FCF Kd g . DOPT, DOPT, . FCF Kd g . D DOPT, . VU . Ku Kd

0 

VU . FCF VU . Kd g . DOPT, DOPT, . FCF Kd g . DOPT,

DOPT, . VU . Ku Kd 0 

Kd g . DOPT, VU . Kd g . DOPT, DOPT, . VU . Ku Kd DOPT, . FCF

VU . FCF 0 

Kd g . DOPT, VU . Kd g VU . Ku Kd FCF . DOPT, VU . FCF 0 

Kd g . DOPT, VU Kd g Ku Kd FCF . DOPT, VU . FCF 0 

Kd g . DOPT, VU . Ku g FCF . DOPT, VU . FCF 0 

Kd g . DOPT, FCF FCF . DOPT, VU . FCF 0 

Kd g . DOPT, 2. FCF . DOPT, VU . FCF 0 

Kd g
FCF

. DOPT, 2. DOPT, VU 0                                                                                                       B26  

Equation (B26) has a quadratic form with DOPT,t-1 as the unknown; it is now solved 

using the corresponding general formula: 

 

                                                                                                                                                                 

                                                                                                                                                                               

                                                                                                                                                                          

,
√ . .

.
                                                                                                                                  

DOPT,
2 4 4.

VU . Kd g
FCF

2.
Kd g
FCF

                                                   B30 B27 , B28 , B29  in  A23  

DOPT,
1 1

VU . Kd g
FCF

Kd g
FCF
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DOPT,
FCF
Kd g

. 1 1
FCF . Kd g
FCF . Ku g

                                                                                               B31  

, . .                                                                                           

The observation made in Appendix A regarding the fact that when Ket=ψt the debt 

level must be inferior to the unlevered value of the company, is now used to find whether 

the sign behind the radical should be positive or negative: 

 

DOPT,
VU

1                                                                                                                                                                      B33  

DOPT,
VU

Ku g
Kd g

. 1 1
Kd g
Ku g

                                                                                                         B34  

Ku g
Kd g

. 1 1
Kd g
Ku g

1                                                                                    B35 B34  in  B33  

1 1
Kd g
Ku g

Kd g
Ku g

                                                                                                                               B36  

Since Kut should be greater than Kdt, 

Kd g
Ku g

1                                                                                                                                                                  B37  

1 1
Kd g
Ku g

Kd g
Ku g

1                                                                                 B38 B37  and  B36  

1 1
Kd g
Ku g

1 

1
Kd g
Ku g

0                                                                                                                                                    B39  

Since the expression under the radical should be positive since Kut>Kdt, inequality 

(B39) only holds if the sign before the radical is negative: 

 

1
Kd g
Ku g

0                                                                                                                                                  B39a  

In consequence, the general formula for the optimal debt value in a perpetuity with 

constant growth is: 
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, . .                                                                                   

In the particular case of a non-growing perpetuity, g=0 and (B40) collapses to 

, . .                                                                                                        

Since in the mentioned case VUt-1=FCFt/Kut, expression (B41a) can be presented in 

the following equivalent form (which is the one derived by Tham et al, 2010): 

 

, .                                                                                                                 

In the next step, expressions for D% as a function of any value of Dt-1 in the context 

of growing perpetuities are derived: 

 

D%
D

E D
D

VU VTS
                                                                                                                      B42  

D%
D

VU
D . Kd . T
 g

                                                                                               B43 B3 , A2  in  B42  

D%
D

VU
D . Kd . T

VU . Ku D . Kd
VU D g

                                                                          B44 B16  in  B43  

D%
D

VU
D . Kd . T

VU . Ku D . Kd VU D . g
VU D

 

D%
D

VU
D . Kd . T

VU . Ku D . Kd VU . g D . g
VU D

 

D%
D

VU
D . Kd . T

VU . Ku g D . Kd g
VU D

 

D%
D

VU
D . Kd . T. VU D

VU . Ku g D . Kd g

 

D%
D

VU . VU . Ku g D . Kd g D . Kd . T. VU D
VU . Ku g D . Kd g
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D%
D . VU . Ku g D . Kd g

VU . VU . Ku g D . Kd g D . Kd . T. VU D
 

D%
D . VU . Ku g D . Kd g

VU . Ku g VU . D . Kd g VU . D . Kd . T D . Kd . T
 

D%
D . VU . Ku g D . Kd g

VU . Ku g VU . D . Kd g Kd . T D . Kd . T
 

%
. . .

. . . . . .
                                                 

 

Or, equivalently, 

 

D%
D . VU . Ku g D . Kd g

VU . FCF VU . D . Kd . 1 T g D . Kd . T
                           B45b B2  in  B45a   

%
. . .

. . . . .
                                                                     

For non-growing perpetuities, g=0; thus, 

 

%
. . .

. . . . . .
                                                                        

Or equivalently, 

D%
D . FCF D . Kd

VU . FCF VU . D . Kd . 1 T D . Kd . T
                                                                         B46b  

%
. .

. . . . .
                                                                                

As was mentioned previously in Appendix A, the numerical application of these 

formulas with Dt-1=DOpt,t-1 make possible the calculation of the optimal leverage. Finally, a 

plot of VLt-1 as a function of leverage is presented in the main part of this document, in 

which the following formulation is used: 

 

D%
D . VU . Ku g D . Kd g

VU . Ku g VU . D . Kd . 1 T g D . Kd . T
 

D%. VU . Ku g VU . D . Kd . 1 T g D . Kd . T

D . VU . Ku g D . Kd g  

D . D%. Kd . T Kd g D . VU . Ku g VU . D%. Kd . 1 T g

VU . D%. Ku g 0 

D . D%. Kd . T Kd g D . VU . Ku g D%. Kd . 1 T D%. g

VU . D%. Ku g 0 
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.
%. .

. . % %. . . %.

                                                                                                                                                      

Equation (B47) has a quadratic form with Dt-1 as the unknown variable and, thus, 

can be solved by means of the general formula 

 
√ . .

.
                                                                                                                                         

with the values for A, B and C presented next: 

%. .
                                                                                                                                    

. % %. .                                                                                                        

. %.                                                                                                                                          

 
The full resulting expression for Dt-1 is not shown in this document due to length 

considerations, but its numerical application is very straightforward. 


